90% DRAFT

METROPOLITAN ST. LOUIS SEWER DISTRICT

<u>CSO - Brentwood and Red Bud Ave CSO Interceptor (I-118) / Outfall (L-111)</u> Elimination and Sewer Separation

12139-015.1

Engineer's Seal

The responsibility of the undersigned Engineer is limited to the technical specifications contained herein, she/he disclaims any responsibility for other documents, including geotechnical reports which do not bear his/her seal and signature.

The Engineer is responsible for Technical Project Specifications Pages 1 thru 52.

Jeffery A Gratzer, P.E. Professional Engineer License #: <u>1999137696</u> Date: 06/15/2020

90% DRAFT

TECHNICAL PROJECT SPECIFICATIONS

for

SEWER CONSTRUCTION AND PRIVATE INFLOW REMOVAL

in

<u>CSO - Brentwood and Red Bud Ave CSO Interceptor (I-118) / Outfall (L-111)</u> <u>Elimination and Sewer Separation</u>

12139-015.1

INTRODUCTION

- 1. The work to be done under this contract consists of the construction of approximately 9,200 lineal feet of pipe sanitary sewers, varying in size from 6" to 30" in diameter and 4,200 lineal feet of pipe storm sewers, varying in size from 12" to 21" in diameter , removal of inflow sources from TBD private properties, and appurtenances to be constructed in an area located north of Interstate 64 and east of Interstate 170 in the Cities of Richmond Heights and Clayton, Missouri in St. Louis County.
- 2. The work consists of furnishing all material, labor, tools, equipment and supervision necessary for the sewer construction, appurtenances, and removal of inflow sources, in accordance with all the requirements of these specifications, and the drawings made a part thereof.
- 3. A mandatory prebid conference will be held at the Metropolitan St. Louis Sewer District or project site as specified in the Notice to Contractors. All contractors will be required to attend the prebid conference. No bids will be accepted from contractors who do not attend this conference.
- 4. An additional charge per calendar day of \$_____ shall be added to each line of the Charge Per Calendar Day column of the Liquidated Damages Table located in the General Project Specifications for this project.
- 5. Pay items ______, and ______ is a designated allowance **OR** are designated allowances and will be deducted from the "TOTAL BID PRICE" before calculating the MWBE requirement.
- 6. This project will be built under the provisions of the "Standard Construction Specifications of The Metropolitan St. Louis Sewer District," dated 2009, except as modified herein.

PART 1 - GENERAL CONDITIONS

a.

Section A, Purpose and Application – the existing paragraph shall become Paragraph 1, and following additions apply:

- 2. Accompanying these specifications are the following plans and attachments which are to illustrate and to be a part of these specifications and the contract documents:
 - Cover Sheet Sheet 1 of 42 Sheets
 - b. Plans and Profiles Sheets 2 through 40 of 42 Sheets
 - c. Detail Sheets Sheets 41 through 42 of 42 Sheets
 - d. Attachment A PIR Location Map (3 Pages)
 - e. Attachment B PIR Quantity Summary (12 Pages)
 - f. Attachment C PIR Site Exhibits (1 Pages)
 - g. Attachment C-1 Unsigned PIR Site Exhibits (68 Pages)
 - h. Attachment D PIR Disconnect Details (39 Pages)
 - i. Attachment E Municipality Agreement (5 Pages)
 - j. Attachment F Utility Letters (1 Pages)
 - k. Attachment G Geotechnical Report (219 Pages)
- 3. Excel files for the ("PIR Quantity Summary") are available upon request from the MSD Project Manager: Patricia Pride, 314-768-6275, paprid@stlmsd.com.
- 4. A copy of the subsurface exploration data has been included at the end of the specifications for informational purposes only, and is not a part of the contract documents.
- 5. Any geological reports provided contain only general and preliminary information which is furnished as an example of soil conditions only, without any express or implied representation, warranty, guarantee, or agreement that the depths or character of materials are correctly shown, or that conditions affecting the work will not differ from those shown.

Section E, Prosecution, Progress and Acceptance of the Work, Paragraph 2, Order of Work – remove the final sentence of the existing paragraph, the existing paragraph shall become Subparagraph a, and the following additions apply:

b. The sewer construction may begin with construction at manhole 1S at the downstream end of the project and proceed upstream.

Section E, Prosecution, Progress and Acceptance of the Work, Paragraph 6, Contractor's Liability for Exceeding the Contract Period – the following additions apply:

- c. Should the Contractor fail to complete this project on or before the contract completion date, as set by the Notice to Proceed, or as adjusted by a contract time extension, the Contractor and his surety will become responsible for the cost of any claim of sanitary sewer backup, within the limits of this project, that is judged to be the responsibility of the District that may occur between the contract completion date and the date the project is completed to the extent it will function as it was designed. This responsibility will be in addition to liquidated damages as established by the Contract Agreement.
- d. The removal of the combined sewer overflow (CSO) structure L-111 and interceptor I-118 at structure 20K3-063C is an integral part of the project. Failure to remove the specified constructed CSO structures by the contract completion date shall result in the assessment of liquidated damages in the amount of \$4,000 per calendar day per constructed CSO structure. This assessment shall be in addition to other liquidated damages as established by the Contract Agreement. The extension of the Contract Time by change order will not relieve the Contractor from this obligation unless so specified by the change order. Contractor shall not proceed with elimination of CSO structure L-111 and interceptor I-118 without authorization from the District.

Section F, Responsibilities of the Contractor, Paragraph 1, Observance of Laws and Regulations, subparagraph e. - add the following sentence:

The District has an **Intergovernmental Reciprocity Agreement Establishing the Mutual Waiver of Fees** with the Cities of Richmond Heights and Clayton. Inspection, Permit or Building fees will not be required from these agencies; however, the Contractor shall obtain all required permits and provide a copy to the District before starting the work. This waiver of fees does <u>not</u> apply to permits required by Unincorporated St. Louis County Building Departments. A copy of the Agreements is attached at the end of the Technical Specifications.

Section F, Responsibilities of the Contractor, Paragraph 6, Overhead High Voltage Power lines - the existing paragraph shall become Subparagraph a, and following addition applies: b. Except for the locations, timeframes, and situations listed below, all costs involved with providing temporary clearance or safety precautions by the electric utility will be at the Contractor's expense. The District will make payment for required provision of temporary clearance or safety precautions by the electric utility for the following locations, as stipulated. The useful life of initial installations should be at least 60 days unless material is damaged during construction.

Location/Reach	Initial Installation Only	Maximum Duration	Conditions/ Remarks
Overhead electric near 9S	Х		
Overhead electric between 21S and 69S and between 47D and 50D	Х		4 power poles near pipings
Power Pole near 21S	Х		Support poles during construction
Power Pole near 67S	Х		Support poles during construction
Power Pole near 49D (in front of 8531 Bryan Avenue)	Х		Support poles during construction
Street Light near EX4 on Everett Ave	Х		Street light pole replacement
Street Light next to between 14S and 51S	Х		Street light pole replacement
Street Light near 23S (in front of 937 S Bemiston Ave)	Х		Street light pole replacement
Street Light near 68S	Х		Street light pole replacement
Street Light near 39D	Х		Street light pole replacement

Section F, Responsibilities of the Contractor - and following addition applies:

- 15. The Contractor shall be required to attend a Neighborhood Project Meeting with the District, City officials, and property owners in the project area. The District will make arrangements for the meeting that will be held at a location within the local municipality on Saturday or during a weekday evening.
- 16. The Contractor shall submit a Traffic Control Plan to the District for review, that includes evaluation on-street parking needs, before project construction commences. The Traffic Control Plan shall meet requirements of all applicable jurisdictions.

Section G, Measurement and Payment, Paragraph 1, Measurement of Quantities, Subparagraph c. - add the following sentence:

When the nature of the lump sum work is such that the work cannot be completed within the same month in which the work is to begin, the Contractor shall submit a progress payment schedule when directed to do so by the District. No payment for the lump sum work will be made until a payment schedule acceptable to the District has been submitted.

Section G, Measurement and Payment, Paragraph 4, Payment for Charges and Extra Work, Subparagraph h – the following addition applies:

The total payment for the use of any contractor-owned equipment shall not exceed 75% of the current purchase price of a comparable piece of equipment.

Section G, Measurement and Payment, Paragraph 5, Materials and Labor Bills – the following addition applies:

The Contractor shall also complete and submit MSD Form C regarding vendor utilization, which is included at the end of the Technical Specifications.

Section G, Measurement and Payment, Paragraph 6, Payment on Cash Contracts – the following additions apply:

- d. After construction has begun, the first monthly payment to the Contractor will include an amount for starting the project. This lump sum amount will be paid for under Pay Item "Mobilization."
- e. The Contractor shall utilize a portion of the "Mobilization" payment amount to make an "Advance Payment" to all subcontractors in the category of "Material/Supplies including Labor or Installation" and/or "Service Provider/Installer" as listed on MSD Form A of the Bid Proposal, and as confirmed by the District. This Advance Payment amount represents a forward payment to the subcontractor in anticipation of starting the work and does not increase the total amount earned by or paid to each subcontractor. The administration and distribution of the subcontractor Advance Payment amounts shall be as follows:
 - 1.) Subcontractors in the category of "Material/Supplies including Labor or Installation" and/or "Service Provider/Installer" as listed on MSD Form A of the Bid Proposal shall be eligible for receipt of the Advance Payment prior to mobilization to the project site. This payment amount shall be subject to the withholding of retainage.

- 2.) Following Notice of Award, the agreed upon Advance Payment amount shall be stated in the MBE/WBE Subcontractor/Vendor Verification Form. The stated amount for each subcontractor shall not exceed 5% of the subcontractor utilization amount as stated in the Bid Proposal.
- 3.) The Contractor shall make the Advance Payment to the subcontractor at least five (5) business days prior to the subcontractor's scheduled mobilization date.
- 4.) As the subcontractor work progresses, the Advance Payment amount shall be deducted from the subcontractor's first regularly scheduled invoice(s).

PART 2 – MATERIALS OF CONSTRUCTION

Section F, Pipe, Paragraph 5, Precast manholes, Paragraph 1, Reinforced Concrete Manholes – the existing paragraph shall become Subparagraph a, and the following additions apply:

- c. Antimicrobial Additive for Concrete Manholes and Structures
 - The antimicrobial additive ConmicShield® as manufactured by ConShield Technologies, Inc. of Atlanta, Georgia; ConBlock MIC as manufactured by ConSeal Concrete Sealants, Inc. of New Carlisle, Ohio; or District approved equal shall be used to render the concrete uninhabitable for bacteria growth for all concrete pipe on this Project.
 - 2) The liquid antimicrobial additive shall be an EPA registered material and the registration number shall be submitted for approval prior to use in the project.
 - 3) The amount to be used shall be 1 gallon per cubic yard of concrete, or a higher amount if recommended by the manufacturer of the antimicrobial additive. This amount shall be added in the total water content of the concrete mix design. The additive shall be added into the concrete mix water to insure even distribution of the additive throughout the concrete mixture. The mixing time is a minimum of seven minutes.
 - 4) The antibacterial additive shall have been successfully demonstrated to provide prevention of microbial induced corrosion in sanitary sewers for ten or more years.
 - 5) The antimicrobial additive shall be used by factory certified pre cast concrete plants.
 - 6) Acceptance shall be a letter of certification from the precaster to the District stating that the correct amount and correct mixing procedure was followed for all antimicrobial concrete.
 - 7) Each manhole shall be plainly stenciled with the name of the antimicrobial additive on the interior and exterior.
- d. Antimicrobial Additive Verification & Testing
 - 1) The ready-mix supplier shall retain two cured pieces of concrete from each pipe made with antimicrobial additive. The pieces must have a minimum dimension of two square inches and be uniform. The specimens shall be placed in plastic baggies and

clearly labeled with the date, batch number, pipe or manhole dimension and specific project.

- 2) One set of samples shall be retained by the pre cast producer and one set shall be secured for the District. The District will randomly select and send seven samples to an approved bacteriological laboratory for testing.
- 3) Before production begins, the manufacturer shall conduct a bacteriological test using an independent bacteriological laboratory for the presence of the approved antimicrobial additive using ASTM D4783. The test shall use the Thiobacillus Thiooxidan strain for testing. The manufacturer shall submit one control sample without antimicrobial additive for testing also. Both samples shall be tested at the same time.
- 4) All other selected specimens shall be tested by an approved independent bacteriological laboratory for the presence of the District approved antimicrobial additive using ASTM D4783. The District allows modified tests when not specified.
 - (a) The report shall be sent to the respective parties.
 - (b) Cost for testing shall be included in the installed price of the additive; the District requires a minimum of seven tests for each project

Section G, Pipe, Paragraph 1, Sanitary and Combined Sewer Pipe – the following addition applies:

f. Corrugated Polypropylene Pipe (PP) Sanitary and Combined Sewers - 12 inch-60 inch

Section G, Pipe, Paragraph 2, Stormwater Sewer Pipe – delete subparagraph f in its entirety, the following replacement applies:

f. Corrugated Polypropylene Pipe (PP) Storm Sewers - 12 inch-60 inch

Section G, Pipe, Paragraph 2, Stormwater Sewer Pipe – the following addition applies:

g. Composite sewer pipe (ABS and PVC) – 12 inch – 24 inch

Section G, Pipe, Paragraph 4, Concrete Sewer Pipe – delete subparagraph b. in its entirety and replace with the following:

b. The shape, dimensions and tolerances of the bell and spigot or tongue and groove ends of the pipe shall meet all requirements of the specifications for joints for concrete pipe, ASTM C443 (Storm Only) or ASTM C361, and be subject to the approval of the Director.

Section G, Pipe, Paragraph 5, Reinforced Concrete Pipe – delete the <u>first sentence</u> of subparagraph a. in its entirety and replace with the following:

It shall be precast and shall conform to the requirements of the Specifications for Reinforced Concrete Culvert, Storm Drain and Sewer Pipe, ASTM C76 (Storm Only) or C655 (Storm Only) or C361, with Shell thickness designated "Wall B or C" and with circular reinforcement in Circular Pipe or to the requirements of Reinforced Concrete Elliptical Culvert Storm Drain and Sewer Pipe ASTM C507 (Storm Only), or ASTM C361.

Section G, Pipe, Paragraph 5, Reinforced Concrete Pipe – the following addition applies:

- e. All Reinforced Concrete Pipe (RCP) allowed by the District shall be manufactured in accordance with American Concrete Pipe Association (ACPA) QCAST certification requirements or National Precast Concrete Association (NPCA) "NPCA Quality Control Manual", including compliance with QCM-001, Chapter 6, Revision 4 dated 06-01-17. RCP manufacturers shall demonstrate that the RCP is in full compliance with one of the certification requirements above, unless otherwise approved by the Director.
- f. Antimicrobial Additive for Concrete Pipe
 - The antimicrobial additive ConmicShield® as manufactured by ConShield Technologies, Inc. of Atlanta, Georgia; ConBlock MIC as manufactured by ConSeal Concrete Sealants, Inc. of New Carlisle, Ohio; or District approved equal shall be used to render the concrete uninhabitable for bacteria growth for all concrete pipe on this Project.
 - 2) The liquid antimicrobial additive shall be an EPA registered material and the registration number shall be submitted for approval prior to use in the project.
 - 3) The amount to be used shall be 1 gallon per cubic yard of concrete, or a higher amount if recommended by the manufacturer of the antimicrobial additive. This amount shall be added in the total water content of the concrete mix design. The additive shall be added into the concrete mix water to insure

even distribution of the additive throughout the concrete mixture. The mixing time is a minimum of seven minutes.

- 4) The antibacterial additive shall have been successfully demonstrated to provide prevention of microbial induced corrosion in sanitary sewers for ten or more years.
- 5) The antimicrobial additive shall be used by factory certified pre cast concrete plants.
- 6) Acceptance shall be a letter of certification from the precaster to the District stating that the correct amount and correct mixing procedure was followed for all antimicrobial concrete.
- 7) Each piece of pipe shall be plainly stenciled with the name of the antimicrobial additive on the interior and exterior.
- g. Antimicrobial Additive Verification & Testing
 - 5) The ready-mix supplier shall retain two cured pieces of concrete from each pipe made with antimicrobial additive. The pieces must have a minimum dimension of two square inches and be uniform. The specimens shall be placed in plastic baggies and clearly labeled with the date, batch number, pipe or manhole dimension and specific project.
 - 6) One set of samples shall be retained by the pre cast producer and one set shall be secured for the District. The District will randomly select and send seven samples to an approved bacteriological laboratory for testing.
 - 7) Before production begins, the manufacturer shall conduct a bacteriological test using an independent bacteriological laboratory for the presence of the approved antimicrobial additive using ASTM D4783. The test shall use the Thiobacillus Thiooxidan strain for testing. The manufacturer shall submit one control sample without antimicrobial additive for testing also. Both samples shall be tested at the same time.
 - 8) All other selected specimens shall be tested by an approved independent bacteriological laboratory for the presence of the District approved antimicrobial additive using ASTM D4783. The District allows modified tests when not specified.
 - (c) The report shall be sent to the respective parties.
 - (d) Cost for testing shall be included in the installed price

of the additive; the District requires a minimum of seven tests for each project

Section G, Pipe, Paragraph 7, Corrugated Metal Pipe – the existing paragraph shall become Subparagraph a, and the following additions apply:

b. Corrugations shall be helical.

Section G, Pipe, Paragraph 8, Polyvinyl Chloride Pipe – the existing paragraph shall become Subparagraph a., and the following addition applies:

b. Pipe for gravity sewer installations shall be installed in accordance with ASTM D2321.

Section G, Pipe, Paragraph 11, High Density Polyethylene (HDPE) – the existing Paragraph shall become Subparagraph a., and the following addition applies:

b. Pipe for gravity sewer installations shall be installed in accordance with ASTM D2321.

Section G, Pipe, Paragraph 13, Fiberglass Pipe – the existing paragraph shall be deleted and the following additions apply:

- a. Pipe for gravity sewer application shall conform to the requirements of ASTM D3262 for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Sewer Pipe. Pipe for force main applications shall conform to the requirements of ASTM D3754 for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Sewer and Industrial and in accordance with AWWA C950 Fiberglass Pressure Pipe."
- b. Fiberglass Pipe design shall conform to AWWA M45 Fiberglass Pipe Design for the size and class proposed. The minimum pipe stiffness shall be class PS46 (psi) for pipe diameters < 60-Inch and class PS72 (psi) for pipe diameters 60-Inch and greater when tested in accordance with ASTM D2412.
- c. Fittings for gravity sewer installations shall conform to ASTM D3840. Fittings for force main installations shall conform to ASTM D5685.
- d. Pipe for gravity sewer installations shall be installed in accordance with ASTM D3839. Pipe for force main installations shall be installed in accordance with AWWA M45.

Section G, Pipe, Paragraph 15, Corrugated Polypropylene Pipe-the following addition applies:

15. Corrugated Polypropylene Pipe.

- a. For use in sanitary and combined sewers 12 to 60 inches in diameter it shall conform to the requirements of ASTM F2764 "Standard Specification for 6 to 60 in. Polypropylene (PP) Corrugated Double and Triple Wall Pipe and Fittings for Non-Pressure Sanitary Sewer Applications." Pipe shall have a minimum stiffness of 46psi when tested in accordance with ASTM D2412.
- b. For use in storm sewers 12 to 24 inches in diameter it shall conform to the requirements of ASTM F2881 "Standard Specification for 12 to 60 in. Polypropylene (PP) Dual Wall Pipe and Fittings for Non-Pressure Storm Sewer Applications;" or for use in storm sewers 12 to 60 inches in diameter it shall conform to the requirements of ASTM F2764 "Standard Specification for 6 to 60 in. Polypropylene (PP) Corrugated Double and Triple Wall Pipe and Fittings for Non-Pressure Sanitary Sewer Applications." Pipe shall have a minimum stiffness of 46psi when tested in accordance with ASTM D2412.
- c. Pipe for gravity sewer installations shall be installed in accordance with ASTM D2321.

Section H, Joints, Paragraph 1, Joint Selection – under sub paragraph a, the following addition applies to the table "SANITARY AND COMBINED SEWERS", "Joint Type":

Corrugated Polypropylene Pipe (PP) D

Section H, Joints, Paragraph 1, Joint Selection – under sub paragraph a, the following addition applies to the table "STORMWATER SEWERS", "Joint Type":

Corrugated Polypropylene Pipe (PP) D

Section H, Joints, Paragraph 3, Type B Joints – the existing paragraph shall be deleted and the following additions apply:

- a. When used with concrete pipes, they shall be approved compression-type joints and shall conform to the requirements of the Standard Specifications for Reinforced Concrete Low-Head Pressure Pipe ASTM C361with 25 foot head.
- b. For pipes 48 inches in diameter and smaller, all gaskets shall be confined in an annular space formed by shoulders on the bell and spigot or in a groove in the spigot of the pipe so that movement of the pipe or hydrostatic or hydrodynamic pressure cannot displace the gasket.
- c. When the joint is assembled, the gasket shall be compressed to form a watertight seal.

d. Single offset joints without shoulders on the bell and spigot will not be allowed for sanitary sewers.

Section H, Joints, Paragraph 5, Type D Joints – the following addition applies:

Type D joints shall also apply to all PP pipes.

Section H, Joints, Paragraph 11, Adapters and Couplings—Subparagraphs b and c shall be deleted in their entirety and replaced with the following:

- b. The connector or adapter shall conform to ASTM C1173, shall be manufactured of an approved pre-formed elastomeric material, 50 Shore A durometer per ASTM D2240, with 300 series stainless steel shear band, conforming to ASTM A240. The connector or adapter shall be tightened around the connecting pipes by use of 300 series stainless steel nuts, bolts, and clamps.
- c. The compression joint connector or adapter and clamps shall be installed as recommended and specified by the manufacturer. Each connector and adapter shall bear the manufacturer's name and required markings.
- d. The connector or adapter shall not be backfilled with concrete, flowable fill, or other cement-containing materials in direct contact with the connector or adapter.

Section K, Crushed Limestone and Screenings for Sewer Bedding, Backfill, and Subgrade Replacement, Paragraph 2, Designation: MSD 1 – Bedding – remove the first paragraph in its entirety and replace with the following:

For pipes 27 inches in diameter and smaller, and all flexible pipes of any diameter bedding shall meet the following gradation except as noted in the details:

Section P, Fencing – Tree Protection

Tree protection fencing shall be constructed of plastic mesh and shall stand at least four feet tall. Mesh shall be brightly colored or otherwise highly visible. Standard orange construction fencing is acceptable.

PART 3 – EXCAVATION

Section D, Work Included in Excavation, Paragraph 1, General, Subparagraph g – the following additions apply:

- 1.) A by-pass pumping plan must be submitted to the Engineer for review before construction may begin. The contractor shall submit complete design data showing method and equipment contractor proposes to utilize in diversion of sewage flow for approval by the Engineer. At a minimum, the submittal shall include the following information
 - 1. Drawing indicating the scheme and location of pumps, suction piping, discharge piping, temporary sewer plugs.
 - 2. Capacities and sizes of pumps, standby equipment, and power requirement if applicable
 - 3. Sewer plugging method and type of plug.
- 2.) The means and methods of accomplishing and maintaining the bypassing shall be the sole responsibility of the contractor.
- 3.) No interruption of sewage flow shall be permitted throughout the duration of the project. If the Contractor fails to maintain the sewage flows with the temporary pumping systems, the Contractor shall be responsible for any fines levied on Owner by the Missouri Department of Natural Resources, or any other applicable agency or entity. The Contractor will be responsible for any sewage backups or bypasses (overflows) that occur as a result of the bypass pumping operation and pay all costs for cleanup, repairs, restitution, damage, fines, etc., whether from private or public customers of the Owner or from public agencies.
- 4.) The contractor is advised that the bypass plans must provide for accessibility to pedestrians and vehicular traffic in accordance with local agency/property owner requirement.
- 5.) Bypass operation will be required during the period of installation of manholes and/or piping connecting to the existing sanitary sewer system where flows are occurring. The bypass pumps and piping flow shall be continuously monitored by a competent operator.
- 6.) The by-passing or discharging of sewage into existing storm sewers or natural channels will not be allowed during pumping operations or any other construction procedures.

- 7.) Wastewater flow received by the existing sewer shall not be disrupted or spilled while constructing the new sewer. By-pass pumping, as required, shall be used throughout the construction period. The new sewer may be used in conjunction with the by-pass, if approved.
- 8.) Payment for by-pass pumping shall be made at the lump sum price for Bid Item "Bypass Pumping." The lump sum price shall include all costs related to by-pass pumping of all wastewater flow throughout construction of this project.
- 9.) Dry weather flows in the system range between XXX cfs and XXX cfs. (XXX gpm to XXX gpm). NOTE: Table below will be updated after 90% in coordination with the existing hydraulic model.

EXISTING REACH	AVERAGE DAILY FLOW	PEAK DAILY FLOW
19K3-080S:19K3-079S	0.153 cfs	0.195 cfs

Section E, Unusual Excavation Conditions, Paragraph 1, Extra Payment Requests, Subparagraph a – the following additions apply:

1.) If dewatering is determined to be necessary, the Contractor shall design, furnish, install, operate, maintain and remove a complete temporary dewatering system as necessary to lower and control water levels below sub-grades of excavation to permit construction in-the-dry.

- 2.) Dewatering equipment shall not be installed, or dewatering operations began, prior to approval of a plan by the District that shall include coordination with methods of excavation and excavation support. All dewatering operations shall be performed to the satisfaction of the District.
- 3.) Payment
 - (a) The costs associated with dewatering shall be reviewed and approved by the District prior to commencement of the work. All costs will be included in the allowance for Pay Item "Dewatering".
 - (b) In any pipe reach that is dewatered by the above methods, no additional payment will be made for special pipe bedding/subgrade replacement due to inadequate dewatering unless specifically approved by the District in advance.

Section F, Open Cut Excavation, Paragraph 2, Underground Structures, Pipe Lines, or Utilities – the following additions apply:

- d. Information provided on the project plans regarding existing service lateral locations was obtained from TV Inspection, Tope field survey, RJN field survey and record drawings.
- e. It shall be the Contractor's responsibility to locate all service laterals not shown on the plans and to verify the location of the existing service laterals which have been shown on the plans. The Contractor shall reconnect all existing service laterals. No separate payment will be made for locating or verifying the location of existing service laterals.
- f. It is not the intent to reconnect any inactive service laterals to the new sewer. The Contractor shall be responsible for determining if a service lateral is either active or inactive. No separate payment shall be made for this work.
- g. All existing lateral pipes which are to be disconnected shall be plugged. No separate payment will be made.
- h. The Contractor shall obtain and complete a "no cost" reconnection permit for each sanitary sewer lateral reconnection from the District's Permit Section. For projects located in unincorporated St.

Louis County, the Contractor shall also obtain a permit from the St. Louis County Department of Public Works for all private lateral construction required more than five feet from the public sewer. The Contractor shall provide the District with the addresses for all properties for which a permit may be required from the County. The District will provide the Contractor with a letter, identifying the project as a District project, to submit to the County when they submit their permit application.

i. Failure to obtain a "no cost" reconnection permit will result in a nonpayment for the wye until a permit is obtained.

Section F, Open Cut Excavation, Paragraph 3, Utilities – the following addition applies:

c. In accordance with Missouri Revised Statutes, Section 319.033, "Public right-of-way, installation within, requirements," the Contractor shall install a tracer wire and an access point within an enclosure over water lines and cleanouts for gravity storm and sanitary laterals if new lateral sewer pipes or water lines are installed and connected to an underground facility within the public right-of-way or if such infrastructure is fully replaced by excavation within the public right-of-way. The Contractor shall comply with the requirements of the Lat. Tracer Wire detail which is included at the end of the technical specifications.

Section F, Open Cut Excavation, Paragraph 3, Utilities – the following addition applies:

- d. Comments the District received from Missouri American Water Company, AmerenUE, Laclede Gas, Charter Communications, City of Saint Louis Water Department, City of Richmond Heights and City of Clayton are attached at the end of the technical project specifications. The Contractor shall comply with all requirements stated.
- e. FOR INFORMATION ONLY: a budget of \$1,710,000 is planned for potential Utility Relocation.

Section F, Open Cut Excavation, Paragraph 4, Limits of Excavation for Pipe Sewers – the following additions apply:

- c. The design of the specified pipe(s) is based on the use of the standard MSD Payline Width as the maximum allowable trench width for each of the pipe diameters and/or classes of pipe indicated.
- d. The maximum allowable trench width is the anticipated width required to allow for reasonable working room during pipe

installation, bedding placement and compaction, and backfilling of the trench. If the project plans and specifications require sheeting to be left in place, the maximum allowable trench width does not include the width of the sheeting.

e. If the Contractor's means and methods require a trench width greater than the maximum allowable trench width, the Contractor shall submit design calculations prepared by a licensed professional engineer confirming that the specified pipe has adequate strength. If the calculations indicate that pipe of greater strength is required due to the Contractor's means and methods, no additional payment will be made for providing the higher strength pipe.

Section F, Open Cut Excavation, Paragraph 14, Bracing and Shoring – the following additions apply:

- e. A shoring plan is required for the work between centerline A, stations 2+00 through 9+60 and 25+64 through 26+83, centerline C, stations 0+00 through 2+50, centerline D, stations 0+00 to 0+18, and centerline L, stations 1+00 to 0+32. The plan must be sealed by a registered professional engineer, and must be submitted to the District for review prior to start of construction. No more than one pipe length of trench shall be left unshored during the excavation process.
- f. The Contractor shall leave shoring for the pipe trench from centerline A, stations 2+00 through 9+60 and 25+64 through 26+83, centerline C, stations 0+00 through 2+50, centerline D, stations 0+00 to 0+18, and centerline L, stations 1+00 to 0+32 in place in the pipe trench.

Section H, Methods of Measurement and Basis of Payment, Paragraph 4, Removal and Replacement of Unsuitable Subgrade – the existing paragraph shall become Subparagraph a, and the following addition applies:

b. Payment for compacted crushed limestone shall be made at the unit bid price for "Crushed Limestone, Unsuitable Subgrade" and shall include all materials and labor required for the installation and compaction of crushed limestone, including the geofabric. When there is no contract unit price for "Crushed Limestone, Unsuitable Subgrade", this work shall be paid for at \$60.00 per cubic yard.

Section H, Methods of Measurement and Basis of Payment, Paragraph 6, Payment for Shoring Ordered Left in Place – the existing paragraph shall be deleted and the following additions apply:

- a. The cost of furnishing and placing all bracing, sheeting, etc., of any kind, shall be included in the bid prices for the various classes of excavation.
- b. Payment will be made for shoring left in place at the bid price per square foot for the bid item "Shoring Left in Place". The area for which payment will be made will be the measured area between an elevation one foot above the top of pipe to two feet below the ground surface for both faces of the trench, for a length equal to the measured horizontal distance between the vertical planes representing the ends of the installed shoring as placed in the trench. The payments made shall include all costs of labor, materials, tools, and equipment; and shall be full payment for furnishing, placing and removing all bracing, sheeting, etc., of any kind, and furnishing and compacting the granular backfill within the measured area as specified. No payment will be made for any shoring left in place at the election of the Contractor with permission of the Director.

Section H, Methods of Measurement and Basis of Payment, Paragraph 8, Payment for Sanitary House Laterals and Utility Removal and Relocation, Subparagraph c – the existing paragraph shall be deleted and replaced with the following:

c. Payment for removal and relocation of water service connections that are in direct conflict with the new sewer shall be made at the unit bid price per place for "Relocation of Water Services" or "Relocation of Water Service-Lead Pipe" as appropriate according to the existing pipe material, and shall include all materials and labor required for the removal and relocation of the water service. When there is no contract unit price for water service relocation, this work will be paid for at \$1700 per place for "Relocation of Water Service-Lead Pipe" as appropriate for the existing water service pipe material.

Section H, Methods of Measurement and Basis of Payment, Paragraph 8, Payment for Sanitary House Laterals and Utility Removal and Relocation, Subparagraph d – the following correction applies:

The last sentence, concerning pay item "Utility Relocation" being included in the total bid price is deleted. There is no pay item for utility relocation.

Section H, Methods of Measurement and Basis of Payment, Paragraph 8, Payment for Sanitary House Laterals and Utility Removal and Relocation – the following additions apply:

e. Nothing in this Paragraph 8 shall increase the extent of Overhead

High Voltage Power line protection to be paid for by the District. The only payment that will be made is as specified in Part 1, Section F, Paragraph 6.b of these Technical Specifications.

- f. All costs for the first 5 feet of 6-inch pipe, cleanouts, tracer wire, and couplings/adapters required to reconnect existing laterals to the new pipes shall be included in one of the pay items for the appropriate size wye. The work shall be done in accordance with applicable local plumbing codes.
- g. All costs for extension of any sanitary and storm sewer laterals beyond 5 feet shall be paid for at a rate of the \$110 per lineal feet. This cost includes all necessary bends, slants, expansions, adapters, tracer wire, and excavation, but excludes the cost of granular fill, paving replacement, and curb replacement.
- h. Connection of the service laterals to the new sewer may be made with the installation of "Inserta-Tee" fitting or approved equal, in addition to approved manufactured "Wye" Fittings.

PART 4 – PIPE SEWER CONSTRUCTION

Section B, Pipe Field Tests, Paragraph 1, General – the following addition applies:

f. All field tests described in Part 4, Section B of the Standard Specifications for sanitary sewers shall also apply to combined sewers.

Section B, Pipe Field Tests, Paragraph 2, Reach Integrity Testing – delete the first sentence and the following replacement applies:

All sanitary and combined sewers shall sustain a maximum leakage limit of 100 gallons/inch of pipe diameter/mile of line/day, as required by the Missouri Department of Natural Resources Specifications.

Section B, Pipe Field Tests, Paragraph 2, Reach Integrity Testing, Subparagraph c, Infiltration/Exfiltration Testing – delete the sixth sentence, concerning leakage limits, and the following replacement applies:

The measurement of leakage shall not exceed 100 gallons/inch of pipe diameter/mile of line/day, as required by the Missouri Department of Natural Resources Specifications.

Section B, Pipe Field Tests, Paragraph 4, Manhole Testing, Subparagraph a, Vacuum Testing – after the first sentence, the following addition applies:

The vacuum test must be performed prior to backfilling around the manhole unless the contractor provides documentation from the precast manhole manufacturer stating that the manhole may be vacuum tested after backfilling has taken place. The contractor must submit this documentation prior to backfilling around any manhole.

Section B, Pipe Field Tests, Paragraph 4, Manhole Testing, Subparagraph b, Exfiltration Testing – delete the second sentence, concerning leakage limits, and the following addition applies:

For exfiltration testing, the allowable leakage limit is 100 gallons/inch of pipe diameter/mile of line/day when the average head on the test section is three feet (3') or less.

Section C, Bedding, Paragraph 1, Bedding, Cradling, or Encasement Types - the following addition applies:

For flexible pipe 18" in diameter or greater, Standard Detail sheet 6 applies.

Section C, Bedding - the following addition applies:

4. Special Bedding – a minimum 6-inch layer of granular bedding material shall be placed on the trench bottom for support under all pipes in this project.

Section D. Pipe Laying, Paragraph 2. Laying of Pipe – the following addition applies:

c. Rubber O-ring gaskets on concrete pipe shall be "equalized" according to manufacturer's directions before final assembly of the pipe joint so that the gasket tension is equalized before the joint is driven "home."

Section G, Structures, Paragraph 7, Setting of Castings, Frames, Fittings, and Steps, Subparagraph d – the following additions apply:

- 3.) Manhole Cover Seals
 - (a) General Sanitary manhole covers on all sanitary manholes that are located in the pavement area shall be sealed with manhole cover gaskets such as those manufactured by Cretex Specialty Products (approved equal) or with gasketed manhole lids as manufactured Neenah Enterprises, Inc., EJ Group, Inc., or Deeter Foundry
- 4.) Manhole Frame Seals
 - (a) General An internal rubber seal shall be installed on all sanitary manholes that are located in the pavement area on this project. A rubber seal extension to cover any additional heights of chimney not covered by the seal itself shall be used as directed by the manufacturer's representative or the District. The internal rubber seals shall be as manufactured by Cretex Specialty Products, or approved equal.
 - (b) Installation A flexible rubber mastic sealant shall be used in the joint between the manhole frame and chimney or cone. Detailed installation procedures shall be in accordance with the manufacturer's instructions.

Section H, Trench Backfill, Paragraph 4, Backfill - Flowable Fill – the existing paragraph shall be deleted in its entirety and the following replacement applies:

a. When required by the Project Plans and Specifications or jurisdictional agency, this work shall consist of placing flowable fill

to fill trenches for pipe, structures, culverts, utility cuts, and other work under pavement or as designated on the plans or by the jurisdictional agency. See Part 5, Section G of the Standard Specifications, and any modifications to Part 5 Section G in these Technical Specifications, for information on materials, proportions, and placement.

Section I, Methods of Measurement and Basis of Payment, Paragraph 2, Pipe Sewers – the existing paragraph shall become Subparagraph a, and the following addition applies:

- b. Payment made shall include Special Bedding depth.
- c. Payment also includes approved connectors for dissimilar pipe materials and all costs for connection of the pipe. When manhole tees are used for manhole structures, the distance between the inside faces shall be excluded from the length of completed pipe sewers for which payment will be made.

Section I, Methods of Measurement and Basis of Payment, Paragraph 2, Pipe Sewers – the existing paragraph shall become Subparagraph a and following addition applies:

d. Payment for concrete pipe shall include all costs for the addition of an antimicrobial additive to the concrete mix unless otherwise specified

Section I, Methods of Measurement and Basis of Payment, Paragraph 4, Tees, Wyes, Bends, Stubs, Etc. – the existing paragraph shall become Subparagraph a and following addition applies:

b. Payment for the check valves shall include all costs and labor for providing and installing the check valve, and shall be paid for under the Pay Item "Check Valve."

Section I, Methods of Measurement and Basis of Payment, Paragraph 6, Manholes – the following additions apply:

e. Payment for manholes, junction chambers and concrete structures shall include all costs for the addition of an antimicrobial additive to the concrete mix unless otherwise specified.

Section I, Methods of Measurement and Basis of Payment, Paragraph 7, Inlet-Manholes – the following addition applies:

c. Structures 14D, 23D, 24D, 30D, 48D, 49D, and 52D shall each be paid as an Inlet-Manhole for the type of inlet-manhole required by the project plans.

Section I, Methods of Measurement and Basis of Payment, Paragraph 8, Inlets – the existing paragraph shall become Subparagraph a, and the following addition applies:

b. Structures 15D, 17D, 18D, 19D, 20D, 23D, 24D, 31D, 32D, 33D, 34D, 35D, 44D, 45D, 46D, 50D, and 55D shall each be paid as an Inlet for the type of inlet required by the project plans.

PART 7 – TRENCHLESS SEWER CONSTRUCTION

Section O, Methods of Measurement and Basis for Payment – Paragraph 1, General – the following addition applies:

- c. Payment will be made for all shafts, bore pits, jacking pits, access pits and take-out pits at the lump sum price for Bid Item "Shafts – Pipe in Tunnel." The lump sum price shall include all costs for excavation, backfilling, labor, materials, equipment and tools to prepare the shafts, jacking pit, guides, jacks, headings, timbering, drainage, lighting, vents and all other necessary appurtenances to construct the shafts.
- d. Within ten (10) days after the Notice to Proceed and before construction begins, the Contractor shall provide as a submittal a shaft location plan and a schedule of values for all shafts, bore pits, jacking pits, access pits and take-out pits that when added together equals the Lump Sum bid price for the Bid Item "Shafts Pipe in Tunnel". The schedule of values must be acceptable to the District and will be used as the basis for progress payments less any retainage as specified.

Section O, Methods of Measurement and Basis for Payment, Paragraph 2, Pipe Sewers in Earth Tunnel – delete subparagraph a. in its entirety and replace with the following:

Payment will be made for the construction of completed pipe a. sewers in earth tunnel at the respective bid price for each size and type per lineal foot for the bid item "Pipe in Tunnel". The length for which payment shall be made shall be the measured horizontal distance for each along the centerline of the pipe exclusive of the distance between the inside faces of each connected structure, sewer, manhole, inlet-manhole, inlet, junction chamber, transition section, or other similar structures. The payments made shall include all costs of grouting, all class "C" excavation pipe in place, testing, jointing, bedding, cradling or encasing and any additional costs required to construct the completed pipe sewer in tunnel in earth. If Class "B" excavation is encountered in earth tunnel, payment will be made for the actual volume of Class B" excavation removed with the payline limits, which shall not extend more than twenty-four inches (24") beyond the diameter of the pipe bell, or the inside diameter of the tunnel liner, whichever is smaller. The minimum payline limits will be that of a four-foot (4') diameter casing pipe. Payment will be made at the bid price for "Class "B" Excavation in Tunnel" and will be an additional payment to the payment made for completed Pipe in Tunnel.

Section O, Methods of Measurement and Basis for Payment, Paragraph 3, Pipe Sewers

Installed by Tunnel Bore Method – delete paragraph 3 in its entirety and replace with the following:

3. Pipe Sewers Installed by Tunnel Bore Method.

Payment will be made for the construction of completed pipe sewers installed by the Tunnel Bore Method, by the same method outlined for the payment of pipe sewers in earth tunnel, as delineated in these Technical Project Specifications.

Section O, Methods of Measurement and Basis for Payment, Paragraph 4, Pipe Sewers in Bored Holes delete subparagraph b. in its entirety and replace with the following:

b. Payment for completed pipe sewer in a bored hole where specified by the Project Plans and Specifications, or where ordered by the Director, shall be made at the bid price per lineal foot of completed specified sewer constructed in a bored hole. The length for which payment shall be made shall be the measured horizontal distance for each along the centerline of the pipe exclusive of the distance between the inside faces of each connected structure, sewer, manhole, inlet-manhole, inlet, junction chamber, transition section, or other similar structures. Such payment shall cover all costs of labor, materials, equipment, and tools to bore the hole, install the liner pipe, lay and joint the ductile iron pipe, provide concrete collars at the junctions with other types of pipe, completely fill the annular space around the pipe and do all other things necessary or required for constructing the completed pipe sewer in a bored hole.

Section O, Methods of Measurement and Basis for Payment, Paragraph 5, Pipe Sewers in Jacked Liners – delete paragraph 5 in its entirety and replace with the following:

5. Pipe Sewers in Jacked Liners.

Payment for completed pipe sewer in a jacked liner, where permitted by the Project Plans and Specifications as an alternate to a pipe sewer in tunnel in earth, shall be made at the bid price for the construction method originally specified. The length for which payment shall be made shall be the measured horizontal distance for each along the centerline of the pipe exclusive of the distance between the inside faces of each connected structure, sewer, manhole, inlet-manhole, inlet, junction chamber, transition section, or other similar structures. Such payment shall cover all costs of labor, materials, equipment, and tools for the drainage and excavation; furnishing, jointing, and jacking and doing all things necessary to construct the completed pipe sewer by jacking. Permission to use construction involving a jacked liner shall not entitle the contractor to any compensation for any additional expenses, or for the costs of an unsuccessful or incomplete attempt to use jacking. When permitted as an alternate to open-cut construction, the method shall be approved by the Director.

Section O, Methods of Measurement and Basis for Payment, Paragraph 6, Pipe Sewers Installed by Jacking – delete paragraph 6 in its entirety and replace with the following:

6. Pipe Sewers Installed by Jacking.

Payment for the construction of pipe sewers installed by jacking at the approved request of the Contractor as an alternate to tunneling, will be made at the bid price for the given size of specified pipe sewer in tunnel, unless an agreed price has been established. The length for which payment shall be made shall be the measured horizontal distance for each along the centerline of the pipe exclusive of the distance between the inside faces of each connected structure, sewer, manhole, inlet-manhole, inlet, junction chamber, transition section, or other similar Such payment shall cover all costs of labor, materials, structures. equipment, and tools for the drainage and excavation; furnishing, jointing, and jacking the pipes; and doing all things necessary to construct the completed pipe sewer by jacking. Permission to install a pipe sewer by jacking instead of the construction originally specified, shall not entitle the Contractor to any compensation for additional expenses, or for the costs of an unsuccessful or an incomplete attempt to use jacking.

Section O, Methods of Measurement and Basis for Payment, Paragraph 8, Pipe Sewers Installed by Microtunneling - delete paragraph 8 in its entirety and replace with the following:

8. Pipe Sewers Installed by Microtunneling.

Payment will be made for the construction of completed pipe sewers installed by the Microtunneling method, by the same method outlined for the payment of pipe sewers in earth tunnel, as delineated in these Technical Project Specifications.

Section O, Methods of Measurement and Basis for Payment, Paragraph 9, Pipe Sewers Installed by Directional Drilling – delete subparagraph b. in its entirety and replace with the following:

 Payment for completed pipe sewer in a directional bored hole where specified by the Project Plans and Specifications, or where ordered by the director, shall be made at the bid price per linear foot of completed specified sewer constructed in a drilled hole. The length for which payment shall be made shall be the measured horizontal distance for each along the centerline of the pipe exclusive of the distance between the inside faces of each connected structure, sewer, manhole, inlet-manhole, inlet, junction chamber, transition section, or other similar structures. Such payment shall cover all costs of labor, materials, equipment and tools to install the pipe, handle and dispose of drilling fluid and material removed, completely fill the annular space around the pipe if greater than ½ inch, connecting pipe at junctions with other pipe or structures, and do all other things necessary or required for constructing the completed pipe in a directionally drilled hole.

Section O, Methods of Measurement and Basis For Payment, Paragraph 12, Pipe Sewers Installed Using Trenchless Methods – delete subparagraph a. in its entirety and replace with the following:

a. Payment for the construction of pipe sewers installed by trenchless methods price will be at the respective bid price for each size and type per lineal foot. The length for which payment shall be made shall be the measured horizontal distance for each along the centerline of the pipe exclusive of the distance between the inside faces of each connected structure, sewer, manhole, inlet-manhole, inlet, junction chamber, transition section, or other similar structures. When permitted as an alternate to open-cut construction of tunnel, the method of payment shall be approved by the Director. Permission to install a pipe sewer by trenchless methods instead of the construction originally specified shall not entitle the Contractor to any compensation for any additional expenses or for the costs of an unsuccessful attempt.

PART 8 – PROTECTION AND RESTORATION OF SITE

Section A, Contractor Responsibility, Paragraph 1 – the existing paragraph shall become Subparagraph a, and the following addition applies:

- b. The Contractor shall take additional steps to preserve and protect trees as indicated on the Project Plans.
 - The Contractor shall retain a Certified Arborist or other reputable licensed horticultural professional with experience in tree preservation (Arborist) to evaluate the impact construction will have on the trees labeled for Arborist-defined Tree Protection (ATP), outline required tree protection measures and observe implementation of same.
 - 2) A report of this evaluation, including identification of trees depicted for removal on the plans that do not need to be or identified for protection on the plans that will not have a reasonable likelihood of survival, shall be submitted to the District prior to construction.
 - 3) For purposes of this project, the critical root zone (CRZ) of a tree will be considered to be 1.5 times the diameter of the tree at breast height, with the diameter of the tree in inches and the CRZ in feet.
 - 4) As a minimum, the Contractor shall install temporary fencing along the drip line, or CRZ, whichever is larger, of trees to be protected. No equipment, construction materials, spoils, fill nor debris shall be located within these areas. Existing fences that provide the same function may be utilized in lieu of temporary fence. The Arborist shall make recommendations for handling locations where protected areas overlap trench limits.
 - 5) As a minimum, unless preferred methods are recommended by the Arborist, prior to excavation the Contractor shall root prune along the pay line of trenches within the CRZ of trees to be protected in order to minimize damage to tree roots in that area. Root pruning shall be performed by means and methods acceptable to the Arborist. Roots shall be clean cut; under no circumstances, shall the Contractor rip or tear tree roots.
 - 6) The Contractor shall protect the limbs of trees. Any limbs in the area required for operation of construction

equipment shall be pruned in advance of the work. Any identified dying or broken branches should be removed to reduce safety hazards. Branches shall be pruned to an adjacent live lateral branch. No stubs may be left on the tree.

- 7) Upon completion of the work, the Arborist shall provide a signed and dated letter, on company letterhead, indicating that the tree protection activities were done under his/her supervision, to his/her satisfaction, and will give the affected trees the best chance of survival.
- All costs associated with evaluation, performance of required work, and reporting on same shall be included in pay item Protection and Restoration of Site.

Section A, Contractor Responsibility – the following additions apply:

- 3. The Contractor has no working room outside of the temporary construction easements depicted adjacent to new easements.
- 4. The Contractor may make agreements with property owners for additional working room or access. The District shall be furnished with a copy of each agreement. All costs for agreements or arrangements shall be included in the Pay Item "Protection and Restoration of Site."
- 5. The Contractor shall be responsible for notifying property owners at least 7 days, but not more than 14 days, in advance of the work.
 - a. All properties adjacent to the project alignment shall be notified of the project within 14 calendar days after Notice To Proceed. The letter included at the end of the Technical Specifications shall be mailed to each property. Provide the District with a list of addresses who were sent the notification.
 - b. The letter shall indicate a contact person and telephone number for your company.
 - c. All properties owners whose house laterals need to be rerouted shall receive a special written notification in advance of the lateral rerouting a minimum of 7 days prior.
- 6. Sequential Restoration shall be required for this project. (NOTE: MSD and ENGINEER ARE STILL DISCUSSING RESTORATION WITH MUNICIPALITIES. WILL UPDATE IN FUTURE)

a. The Contractor shall begin site restoration upon substantial

completion, as determined by the District, of any of the reaches defined in the restoration schedule below, and complete the restoration work for this reach within the time allotted in the restoration schedule. Special consideration shall be given to property owners who have to have their laterals rerouted.

- b. This restoration shall include, but is not limited to, such items as sodding, replacement of sidewalks, fences, driveways, and street pavement, grouting of sewer scheduled to be abandoned, and any items required as part of any special agreements.
- c. Any restoration work damaged or destroyed by the Contractor's subsequent work shall be replaced by the Contractor at his expense. No additional payment shall be made for sequential restoration.
- d. If the Contractor exceeds the time of restoration on any reach of pipe, he may be directed to stop work on all other operations until the restoration for that reach is completed.

RESTORATION SCHEDULE					
REACH	DOWNSTREAM STATION	UPSTREAM STATION	RESTORATION COMPLETION TIME (DAYS)		
<mark>#1</mark>	TBD	TBD	TBD		
<mark>#2</mark>					
<mark>#3</mark>					
<mark>#4</mark>					
(NOTE: MSD and ENGINEER ARE STILL DISCUSSING RESTORATION					

(NOTE: MSD and ENGINEER ARE STILL DISCUSSING RESTORATION WITH MUNICIPALITIES. WILL UPDATE TABLEIN FUTURE)

- 7. The Contractor shall comply with all the requirements of the Missouri Department of Transportation, St. Louis County Department of Transportation, the City of Richmond Heights and/or the City of Clayton, which are included at the end of these technical specifications. Contractor shall submit traffic control plan to Owner and Engineer for review prior to starting any work.
- 8. The Contractor shall comply with all the requirements of the Missouri Department of Transportation.
- 9. It is anticipated that a lane closure on a State maintained route will not be required as a part of this project

- PART 8
 - 10. If the Contractor determines that shoulder work is required, the Contractor is responsible for contacting MoDOT's Work Zone Coordinator Jim Connell (314-565-6717). A copy of the MoDOT St. Louis District Work Zone Coordination Program can be found under Section 616.2.5 of the Engineering Policy Guide (EPG) at http://epg.modot.org/. The Contractor shall comply with this plan in performance of the work. A plan must be prepared for any proposed lane or shoulder closure on a state maintained roadway and the plan must be in compliance with the latest MoDOT Typical Applications (TA's) found in the EPG under MoDOT Traffic Control Field Operations 61623 for at http://epg.modot.mo.gov/index.php?title=616.23 Traffic Control for Field Operations
 - 11. A copy of the MoDOT Permit and Lane Closure Approval must accompany the Contractor or his crew at all times. If the contractor cannot produce documents upon request, the work zone is subject to immediate removal.
 - 12. All costs for complying with these provisions shall be included in the Pay Item "Protection and Restoration of Site."
 - 13. Property Damage (Structure Condition) Survey
 - a. The Contractor shall conduct interior and exterior condition inspection of the properties and structures at the locations listed below prior to the start of, during, and after the completion of excavation and/or tunneling.
 - 1) 1042 Terrace Drive
 - 2) 1050 Terrace Drive
 - b. Pre-Construction
 - 1) Prior to beginning the work under this section, request in writing from each property owner permission to conduct the inspection and condition survey. Include a proposed schedule for the inspection and condition survey. Request that the property owner return a signed and dated Contractor pre-printed acknowledgement giving permission to the Contractor to conduct the inspection and condition survey.
 - 2) In the event that a property owner denies access for the inspection and condition survey, the Contractor shall notify such property owner, by certified mail, on the intent of the survey. If after two (2) weeks access is still denied, the District, upon review of the submitted correspondence may waive the requirement for conducting the inspection

and condition survey at that location.

- 3) The pre-construction inspection and condition surveys shall produce baseline documentation for comparison against future inspections and condition surveys.
- 4) The building exteriors, property and environs shall be observed. The exterior condition of, but not limited to, all structures, sidewalks, curbing, pavements, landscaping features, miscellaneous site improvements, and so forth shall be surveyed. Defects such as, but not limited to, evidence of cracking, damage, discoloration, drainage, ponding and so forth shall be documented. Any existing cracks shall be located, measured and recorded at the time of inspection. All existing deficiencies, major or minor, shall be documented. Documentation in the form of digital photographs with a written detailed log of each photograph and narrated video shall be produced. Any supplementary notes, sketches, or diagrams voluntarily produced at the contractors' discretion shall be submitted.
- Structure interiors including the basement shall be 5) observed. Defects such as, but not limited to, evidence of discoloration, cracking, damage, water intrusion. basement flooding and so forth shall be documented. Any existing cracks shall be located, measured and recorded at the time of inspection. All existing structural deficiencies, major or minor, shall be documented. Documentation in the form of digital photographs with a written detailed log of each photograph and narrated video shall be produced. Any supplementary notes, sketches, diagrams of all walls, partitions, floors and ceilings, voluntarily produced at the contractors' discretion shall be submitted.
- 6) One calendar week prior to the start of construction, the Contractor shall prepare and deliver to the District two (2) bound copies of the pre-construction inspection and condition survey containing all field notes taken, sketches and diagrams prepared, photographs obtained, digital photographs and/or digital video obtained.
- c. During Construction
 - 1) As construction progresses, the Contractor shall reinspect and conduct a condition survey, in a manner that duplicates the pre-construction inspection, as often as the

Contractor deems necessary to verify the adequacy of the construction methods for prevention of damage and to obtain sufficient evidence for use in defense against possible claims of damage from third parties.

- 2) Cracks and/or structural damage documented before the start of construction shall be monitored during construction for movement or additional distress.
- 3) One calendar week after completion of an interim inspection and condition survey, the Contractor shall prepare and deliver to the District two (2) bound copies of an inspection and condition survey report containing all field notes taken, sketches and diagrams prepared, photographs obtained, digital photographs and/or digital video obtained.
- d. Post-Construction
 - 1) Prior to completion of sequential restoration for the reach to which this section applies, in a manner that duplicates the pre-construction inspection, the Contractor shall re-inspect and conduct a condition survey.
 - 2) One calendar week after completion of an inspection and condition survey, the Contractor shall prepare and deliver to the District two (2) bound copies of the postconstruction inspection and condition survey report containing digital photographs and digital video obtained. Any supplementary notes, sketches, diagrams, voluntarily produced at the contractors' discretion shall be submitted. The results of the post-construction inspection and condition survey shall be compared to the results of the pre-construction inspection and condition survey. Specific similarities and differences shall be noted in the report.
- e. Condition Survey Inspector Qualifications
 - 1) Qualified specialists, subject to review by the District, shall perform the inspections and condition surveys.
- f. Photograph Requirements
 - 1) Digital photographic images shall be stored on a DVD.
- g. Video Requirements

- 1) Analog format video recordings on VHS tape will not be acceptable.
- Digital format video recordings shall be stored on a DVD and viewable by standard video software such as Windows Media Player or equal.
- 3) Submit digital files of the original CCTV inspections to the District; a summary index sheet shall be included with the submittal.
- 4) Ensure that the entire inspection of a particular condition survey is contained in a single recording.
- h. Certifications
 - 1) All copies of the pre-construction, interim, and postconstruction inspection and condition survey reports shall be signed and dated by those taking part in the inspection. The execution of the reports shall be documented by an independent witness, such as a District representative or property owner.
- i. Nothing contained herein shall relieve the Contractor of responsibility for claims arising from the Contractor's construction operations. Neither failure to inspect any structure, whether or not required under this section, nor the inadequacy of the inspections performed, shall relieve the Contractor of its responsibility.

Section B, Land Disturbance Activity – the content of the existing section shall be deleted in its entirety and the following replacement applies:

The Contractor shall install and maintain adequate sediment and erosion controls to prevent soil erosion and/or deposition of materials off-site in order to protect neighboring properties, downstream drainage facilities, and waterways.

Designation of Subparagraph c is deleted and verbiage following it shall be treated as a continuation of Subparagraph b.

Under Subparagraph b (as corrected from c) – the following additions apply:

- 10.) Site boundaries and outfalls marked on a site map. An aerial/contour map will be provided by the District, upon request by the Contractor.
- 11.) A copy of the District's permit and a SWPPP check list are included at the end of the technical project specifications.

The Contractor's SWPPP and activities shall comply with the requirements of the permit and SWPPP check list.

Subparagraphs c and d are added as follows:

- c. A minimum of three (3) copies of the SWPPP shall be submitted to the District.
- d. The SWPPP Check List attached at the end of these specifications is to be completed and signed by the Contractor, and submitted with the SWPPP.

Section B, Land Disturbance Activity, Paragraph 2, Item 5, Subparagraph b – the following addition applies:

Additional resources are available at the USEPA internet site, <u>http://cfpub.epa.gov/npdes/stormwater/swppp.cfm</u> <u>https://www.epa.gov/npdes/developing-stormwater-pollution-prevention-plan-swppp</u>.

Section B, Land Disturbance Activity – the following additions apply:

The Contractor may be required by MDNR to sample and report as a result of illegal discharges, compliance issues, complaint investigations, or other such evidence of contamination from construction activities on the project site. Settable solids from a stormwater outfall shall not exceed 2.5 ml/L per Standard Method 2540 F for storm events up to but not exceeding the local 2-year, 24-hour storm. Upon request by the District, the Contractor shall obtain a split sample. One sample shall be sent to a testing lab, and the other sample given to the District. The Contractor, at his cost, shall use a testing lab approved by the District.

6. The Contractor shall be subject to the same enforcement action that is imposed on the District, by the state, due to violation of the permit.

Section C, Agreements with Property Owners – the existing paragraph shall become Paragraph 1, and the following additions apply:

- The Contractor shall comply with the following agreements regarding site access as stated below that were made with
- The Contractor shall comply with the following agreements as stated below:

(NOTE: THIS SECTION WILL BE UPDATED IN FUTURE, AFTER NEGTIATIONS WITH PROPERTY OWNERS) Section E, Fences,– the following additions apply: 4. Temporary fencing shall be placed on the following properties:

(NOTE: THIS SECTION WILL BE UPDATED IN FUTURE, AFTER NEGTIATIONS WITH PROPERTY OWNERS)Section G, Seeding – the following correction applies:

The designation of a second paragraph is deleted and the verbiage of paragraph 2 is treated as a continuation of paragraph 1.

Section H, Approval and Payment – the following additions apply:

- 6. Trees and Landscaping
- 7. Payment for the Structure Condition Surveys will be included in the Pay Item "Protection and Restoration of Site".
- 8. Payment for "Modular Block Wall" will be made at the bid price per square foot of front face of wall as computed from the contract documents. The front face area shall extend from the top of the cap unit to the bottom of the base unit. Payment will include all costs of Class "C" excavation, footings, geotextile fabric, geogrid, granular backfill, compaction of granular backfill, drain tile, fencing, and roof/yard drain extension, complete.

Section J, Modular Block Wall – The following addition applies

- 1. General
 - a. Work includes designing, furnishing and installing solid precast modular blocks (PMB) or approved equal to the lines and grades shown on the plans and as specified herein. Also included are excavation for the wall, compaction of backfill, extension of the existing roof/yard drains, installation of toe drains, furnishing and installing appurtenant materials required for construction of the complete system.
 - b. The contractor shall provide to the District a retaining wall design (Wall Design) and shop drawings, signed and sealed by a Registered Professional Engineer in the State of Missouri. There shall be no additional cost to the District for providing said design and shop drawings. No work shall be commenced prior to written approval of said design and shop drawings by the District.
 - c. The design shall conform to the requirements of the St. Louis County Department of Public Works Division of Code Enforcement: Residential

Retaining Walls Building Permit Requirements.

- d. The retaining wall design and shop drawings shall incorporate the requirements shown on the Project Plans and in these specifications.
- 2. Materials
 - a. Wall Unit
 - 1.) Precast modular blocks shall be a solid block style similar to style, size, and color as existing wall. Modular block systems with planting pockets shall not be used.
 - b. Geogrid
 - 1.) If geogrid reinforcement is required as a part of the design and construction of precast modular block wall, it shall be as detailed in the shop drawings submitted and approved by the District. If geogrid reinforcement is required, the contractor shall submit the material test data with the design and shop drawings for review by the District.
 - c. Backfill
 - 1.) The top 8" of backfill shall consist of good topsoil.
 - 2.) If granular backfill is used, it shall consist of clean aggregate meeting the following gradation:

Percent Passing
100
0-5

- 3.) MSD Type 1 bedding is an acceptable substitute for the above granular backfill gradation.
- 4.) If granular backfill is used, an 18" cap of soil shall be placed on top of the granular backfill.
- d. Drain Tile
 - 1.) Drain tile shall be used. The drain tile should be perforated or slotted PVC or corrugated HDPE pipe. The drain shall be 6" minimum in a sock. The drain tile should be day-lighted at low points and/or periodically along the wall alignment with a 50 foot maximum spacing on outlets.
 - 2.) Drain tile outfalls shall outfall a minimum of 1 ft above the channel toe of slope.
- e. Geotextile Fabric
 - 1.) Provide a geotextile filter for separation from backfill at the tails of the blocks and at rock/soil interfaces.
- f. Roof/yard Drains

- 1.) Roof/Yard Drain extensions shall be Schedule 40 PVC or equal as approved by the District. The pipe diameter shall match the existing pipe size.
- 2. Construction Requirement
 - a. General
 - 1.) Contractor shall construct the modular block wall per the manufacturer's recommendations.
 - b. Leveling Pad
 - 1.) The Contractor shall be responsible for determining the suitability of the soil conditions. The contractor shall be responsible for the design and construction of the leveling pad required to accommodate the design loads and the soil conditions.
 - c. Wall Backfill
 - 1.) The gradation, placement, and compaction of the granular wall backfill ("Granular Backfill') shall be in compliance with the Wall Design as defined above.
 - 2.) Geofabric shall be placed in compliance with the Wall Design
 - 3.) Geogrid shall be place in compliance with the Wall Design
 - d. Roof/Yard Drain Extension
 - 1.) The existing roof/yard drains shall be extended through the proposed retaining wall. The roof/yard drains shall not be connected to the drain tile system.
 - 2.) Where required, pipe extensions shall be incorporated in accordance with the manufacturer's recommendations.
 - e. Fencing
 - 1.) The existing fencing along the top of modular wall shall be replaced with fencing of similar material and design as existing.

2. <u>PART 9 – MISCELLANEOUS</u>

- 3. Section D, Removal and Replacement of Pavements and Roadway Wearing Surfaces, Paragraph 4, Asphaltic Concrete Street Pavement, Subparagraph b shall be deleted in its entirety and the following replacement applies:
 - b. Payment will be made for the asphaltic concrete at the bid price per square yard for "Street Pavement Asphaltic Concrete Removal and Replacement" for the area replaced, which shall not extend beyond two (2) feet each side of the standard payline width of excavation for sewers, manholes and other structures, and shall exclude inlet sumps and curbing. Such payments shall include costs of labor, equipment, primer, saw cutting, and asphaltic concrete required for removing and replacing the completed base and pavement surface.
- Section D, Removal and Replacement of Pavements and Roadway Wearing Surfaces, Paragraph 5, Rigid Base Pavements, Subparagraph b – subparagraph 1 shall be deleted in its entirety and the following replacement applies:
 - 1.) Payment will be made for the concrete pavement removed and replaced at the bid price per square yard for "Street Pavement – Concrete Removal and Replacement". The area for which removal and payment will be made shall be full slab from joint-to-joint or edge of pavement, for any disturbed slab located within the payline width for excavation of sewers, manholes and structures, excluding the area for inlet sumps and curbing.
- Section D, Removal and Replacement of Pavements and Roadway Wearing Surfaces, Paragraph 6, Sidewalks and Driveways, Subparagraph b, Item 1 – the first sentence is deleted in its entirety and the following replacement applies:

Payment will be made at the bid price per square yard for "Sidewalks & Driveways Concrete – Rem. and Rep.".

 Section D, Removal and Replacement of Pavements and Roadway Wearing Surfaces, Paragraph 6, Sidewalks and Driveways, Subparagraph c, Item 1 – the first sentence is deleted in its entirety and the following replacement applies:

Payment will be made at the bid price per square yard for "Driveways – Asphaltic Concrete".

7. Section D, Removal and Replacement of Pavements and Roadway Wearing

Surfaces, Paragraph 6, Sidewalks and Driveways – the following additions apply:

e. All driveways in the City of Richmond Heights and the City of Clayton right-of-way shall be replaced with pavement similar in material to that removed. Replacement shall be equal to or greater than the thickness of the pavement removed, but not less than 6" thick.

Section D, Removal and Replacement of Pavements and Roadway Wearing Surfaces, Paragraph 8, ADA Access Ramps, Subparagraph a – the last sentence and the word "Two" before it are deleted in their entirety and the following replacement applies:

Two ramps may be required if the inlet is in the rounding.

Section G, Signs – delete existing Paragraph, and replace with following:

- 1. When required by the Project Specifications, the Contractor shall furnish a sign at each of the major work locations to inform the public of the work under construction. The sign layout shall conform to the SIGNS detail included at the end of the Technical Specifications. The "Project Type" and "Estimated Value \$" information to use will be provided by the District with the Notice to Proceed documentation. The sign(s) shall be located as approved by the District and maintained in a neat and orderly condition. No additional payment will be made for the required sign(s).
- 2. The Contractor shall furnish (1) new sign(s).

Section H, Removal of Interceptor.

 Payment for the removal of interceptor will be at the lump sum bid price for "Removal of Interceptor", and shall include all cost for labor, equipment, and material for removal of the weir, grout fill trough to structure invert at structure 20K2-063C and plug existing 12" DIP from interceptor structure to existing MH 20K2-119S as indicated on plans.

SECTION P REMOVAL OF INFLOW SOURCES is added as follows:

- 1. General
 - a. This work consists of supplying all materials, labor and equipment necessary to complete removal of private inflow sources from the sanitary sewer as described on each Site Exhibit including but not limited to, replacement of pavement, retaining walls, and sodding, in kind, to equal or better condition, for TBD properties. The Site Exhibits are attached at the end of the Technical Specifications in Attachments C and C-1.

- b. Contractor shall start work immediately on properties included on Site Exhibit No. TBD through No. TBD in Attachment C per the specification requirements
- c. Contractor shall NOT start work on any properties included on Site Exhibit No. TBD through No. TBD in Attachment C-1 until written notification to proceed with work on these properties is provided by the District. Contractor shall not enter any of these properties in Attachment C-1 for inspections or evaluations until directed and approved in writing by the District.
- d. Contractor shall make provisions in the schedule and sequence of work for properties in Attachment C and C-1 appropriately.
- e. Contractors are required to bid on every site and item in the bid package. If a Contractor does not bid on all sites, the total bid package will be rejected as "non-responsive."
- f. When work is started on a site, the Contractor has 7 days to complete work on that site.
- g. All homeowners/tenants shall be notified of work on their property no later than seven (7) calendar days prior to the actual commencement of construction on their property. The contractor shall send a homeowner notification letter to each private property included in the project. A copy of the notification letter is attached at the end of the Technical Specifications. Any interior work done on private property must be coordinated with the property owner in advance to obtain access.
- h. Any Contractor performing plumbing work on private property must have appropriate licenses and permits as required by the local jurisdiction and Metropolitan St. Louis Sewer District.
- i. The Contractor is responsible for obtaining all permits and paying all Permit Fees. The Contractor shall submit a copy of all permits to the MSD inspector.
- j. The Contractor shall inspect all vented cleanouts and drains proposed for solid caps or plugs before proceeding with any improvement work. The Contractor shall determine from the inspection if the vented cleanout or drain is the air vent and/or master trap for the building. After approval from the MSD inspector any cleanouts or drains that are the building vent and/or master trap shall not be capped or plugged, but shall be raised per the contract documents. Costs for work to be completed may require a

field change.

- k. For sites that require new MSD storm sewer, the Contractor shall not begin work on that site until the storm sewer required for connection has been completed and accepted by the District.
- I. Prior to the start of construction on any site, the Contractor shall take photographs of existing conditions and provide a copy of the photographs to the District.
- m. The Contractor shall obtain and complete a "no cost" reconnection permit for each storm lateral pipe reconnection from the District's Permit Section.
- **2.** Private Drain Disconnects
 - a. Materials
 - 1.) Cleanout cap must be solid (no vent holes), opening to 90 degrees, if hinged. Cap to be PVC in grassy areas, heavy duty cast iron in vehicular pavement areas and light duty cast iron in sidewalk areas.
 - 2.) Cleanout top section to be of SDR-35 PVC. For cleanout connection, use Elastomeric Coupler with clamps. If grade is 20% or greater, use stainless steel shielded Elastomeric Coupler. Construct in accordance with the cleanout detail, which is attached at the end of the Technical Specifications.
 - 3.) Pipe plugs shall be ETCO Expandable Pipe Plugs, ETCO T Cone Expandable Pipe Plugs or approved equal.
 - 4.) Pipe conforming to the following requirements shall be used for underground drainage of downspouts, driveway drains, etc:
 - ASTM D3034 Standard Specifications for Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings, SDR 35. Joints and jointing material shall conform to ASTM D3212 Standard Specifications for Joints for Drain and Sewer Plastic Pipes using Flexible Elastomeric Seals.
 - ii. ASTM D2729 Standard Specification for Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings, Schedule 40. Joints and jointing material shall conform to ASTM D2855 Standard Practice for Making Solvent-Cement Joints with Poly(Vinyl Chloride) (PVC) Pipe

and Fittings.

- iii. Fittings shall be of the same material and strength requirements of the pipe as well as monolithic in construction.
- 5.) Black corrugated piping for surface drainage shall have a smooth interior and annular exterior corrugations and shall conform to the requirements of ASTM F2648 Standard Specifications for 2 to 60 inch Annular Corrugated Profile Wall Polyethylene (PE) Pipe and Fittings for Land Drainage Applications. Fittings shall be of the same material and strength requirements of the pipe. Pipe shall be joined using a bell and spigot joint meeting ASTM F2648.
- 6.) If draining to the street, an approved curb opening must be used, as is requested by the City of Clayton or Richmond Heights. Variances may be required.
- 7.) Replacement gutters should be of same material as those they are replacing.
- 8.) When replacing concrete or asphalt, new material must blend with the existing surrounding material, and thickness of new concrete or asphalt shall match existing material. Asphalt pavement shall be saw-cut and replaced the trench width and length required to be removed for construction, unless otherwise noted. Concrete pavement shall be replaced joint-to-joint of each section required to be removed for construction.
- 9.) All lawn areas disturbed by construction shown on the site exhibit shall be replaced with sod. Replace zoysia areas with zoysia sod. All other lawn areas shall be replaced with bluegrass sod, unless noted otherwise on the site exhibit or these Technical Specifications.
- 10.) Connection of storm laterals to the storm sewer main may be made through the installation of "Inserta-Tee," "Fernco QwikSeal," or approved equal taps, in addition to approved manufactured "wye" or "tee" fittings.
- 11.) All other materials supplied shall comply with the provisions of the Standard Construction Specifications of the Metropolitan St. Louis Sewer District, dated 2009.
- b. Downspout Disconnection
 - 1.) Downspouts shall be disconnected as indicated on the

various Site Exhibits, and in accordance with the following descriptions of work for each item listed on the exhibit:

- 2.) Disconnect downspout from boot Cut downspout a few inches above the boot, making sure there is enough room for the new downspout material "elbow" or other end of pipe device. Orient elbow to direct storm water away from existing building and in the direction of drainage.
- 3.) Remove the boot Cut below grade, removing any sharp edges. Patch area with surrounding material (i.e. grass, concrete, asphalt).
- 4.) Seal the boot Seal the existing downspout pipe below grade with grout or other material that makes a permanent, weatherproof seal. Smooth the top surface.
- 5.) Downspout "T" cleanout and plug Use rectangular to round PVC coupler to connect existing downspout to a 45 degree PVC tee with screw type cleanout plug.
- 6.) Downspout leaders, elbows, and fittings shall match existing color, size, material, and type of existing downspouts and guttering.
- 3. Sump Pump Discharges
 - a. All work shall comply with St. Louis County and/or the City of Clayton or Richmond Heights requirements and applicable plumbing codes.
 - b. Materials
 - 1.) PVC Pipe and Fittings
 - i. Sump pump discharge piping and appurtenances shall comply with applicable plumbing codes.
 - ii. All other materials supplied shall comply with the latest version of the Standard Construction Specifications of the Metropolitan St. Louis Sewer District.
 - c. Removal of existing connections between sump pump and the sanitary sewer system.
 - 1.) Existing sanitary sewer Services to Remain: Maintain

services which will remain and protect them against damage.

- 2.) Existing sanitary sewer connections To Be Removed or Relocated: Locate, identify, disconnect, and seal or cap off sump pump to sanitary sewer connections as required.
- 3.) Disconnect, demolish, and remove existing connection between the sump pump and the sanitary sewer.
- 4.) Piping to Be Removed: Remove as much as possible of the existing; and cap, repair or plug remaining piping with same or compatible piping material.
- d. Piping Installation
 - 1.) Site Exhibits indicate general location and alignment of piping systems. Install piping as required to generally discharge sump pumps to grade in the approximate locations show.
 - 2.) Install piping indicated to be exposed at right angles or parallel to building walls. Diagonal runs are prohibited.
 - 3.) Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 - 4.) Install piping to permit valve servicing.
 - 5.) Install piping at slopes required by plumbing code.
 - 6.) Install piping free of sags and bends.
 - 7.) Install fittings for changes in direction and branch connections.
 - 8.) Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
 - 9.) Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab

in piping and pull past each joint as completed.

- 10.) Install gravity storm drainage piping at the following minimum slopes unless otherwise approved:
 - i. Sump pump Drains: 2 percent downward in direction of flow for piping NPS 3" and smaller.
 - ii. Sump pump Drains: 1 percent downward in direction of flow for piping NPS 4" and larger.
- 11.) Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- 12.) Install sleeves for piping penetrations of walls, ceilings, and floors.
 - i. Galvanized-Steel Wall Pipes: ASTM A53/A53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
 - ii. Galvanized-Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
 - iii. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- 13.) Install sleeve seals for piping penetrations of concrete walls and slabs. Subject to compliance with plumbing codes, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - (a.) Advance Products & Systems, Inc.
 - (b.) <u>CALPICO, Inc</u>.
 - (c.) <u>Metraflex Company (The)</u>
 - (d.) Pipeline Seal and Insulator, Inc.
- e. Field Quality Control
 - 1.) During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

- i. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
- ii. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- 2.) Re-inspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for re-inspection.
- 3.) Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- 4.) Test sump pump discharge piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - i. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - ii. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - iii. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - iv. Prepare reports for tests and required corrective action.

f. Cleaning

- 1.) Clean interior of piping. Remove dirt and debris as work progresses.
- 2.) Place plugs in ends of uncompleted piping at end of day and when work stops
- 4. Measurement and Payment

- a. The work will not be measured for payment. No separate payment will be made for any work involved for the TBD, even when there is a bid item for such work. All work will be paid for at the lump sum price per each "Site".
- b. The lump sum for each "Site" will include the cost for that Site as identified in Attachments C and C-1 of the Contract Documents. Each PIR Site Exhibit sheet describes a "Site." Payment for each "Site" will include all labor, materials, permits, inspections, and restoration to complete the Site as specified and as shown on the Exhibits. All work on a "Site" shall be completed before including on a pay application request.
- c. Connections to the storm sewer main and corresponding storm sewer laterals shall be included at the lump sum price for each respective site.

SECTION J MANHOLE REHABILITATION

1. General.

- a. The Contractor shall replace the existing manholes with slotted covers with solid covers at the locations listed below.
 - 1.) **TBD**
- b. When excavation in pavements is required, removal and restoration of the pavements shall be as specified by the municipality or agency with jurisdiction.

2. Submittals.

- a. The Contractor shall provide a minimum of three copies of each shop drawing, material certification, or manufacturer's literature for review and approval by the District prior to the start of Work. The Contractor shall be required to provide submittals for all materials to be incorporated in the project.
- b. The District shall review and approve all materials before the work begins. The District may approve substitution of materials, requested by the Contractor.

3. Install New Manhole Cover.

- a. The work includes installing a new cover seal and locking cover, and cleaning the existing frame. The existing frame shall be cleaned with high pressure water blasting with a minimum of 3500 psi. If needed, the casting shall be ground to remove any debris or frame material that prevents proper seating of the cover in the frame.
- b. Unit bid price for Pay Item "Install Manhole Covers (Only)" shall include total costs for removing and disposing of the existing manhole cover and installing new cover seal and locking cover, and for furnishing all labor, materials, equipment, and all necessary incidentals needed to complete the work.

CONTRACTOR LETTERHEAD

Date:

RE: _____

Contract No.

Dear Property Owner or Resident:

Our Company has been selected by the Metropolitan St. Louis Sewer District to construct the above referenced sewer project that may be on, adjacent to, or abutting your property.

This letter is to inform you that construction on this sewer project will begin in the near future. We suggest that you remove any trees, shrubs or improvements located in the permanent easement that you wish to save prior to the start of construction. Also, if you have any underground improvements, such as sprinkler systems or invisible fences for dogs, we would appreciate you contacting us.

Contact______ with our company at ______ if you have questions concerning the construction activity planned on your property. For after hour's emergency information, please contact the Metropolitan St. Louis Sewer District Customer Service Department at (314)768-6260.

Sincerely,

(COMPANY NAME)

Project Manager

ATTACHMENT E:

MUNICIPALITY AGREEMENTS

INTERGOVERNMENTAL RECIPROCITY AGREEMENT ESTABLISHING THE MUTUAL WAIVER OF FEES

WHEREAS, the Metropolitan St. Louis Sewer District ("MSD") values the relationship it has built with other governmental entities, and intends to comply with all relevant governmental ordinances;

WHEREAS, MSD appreciates that, as governmental entities, both MSD and $\frac{22}{12}$ are political subdivisions of the State of Missouri, and that both are clothed with sovereign immunity;

WHEREAS, MSD recognizes that it is in the best interest of the public that additional fees not be imposed upon governmental entities, including MSD, when such entities undertake repairs, maintenance or new construction:

NOW, THEREFORE, the parties agree as follows:

- 1. Neither MSD nor the City of Clayton shall charge the other party to this Agreement plan review, inspection or permit fees or building fees for projects that involve repairs, maintenance or new construction;
- This Agreement does not affect the applicability of sewer connection fees and Caulks Creek or Williams Creek impact fees which are necessary to join new or existing facilities to MSD's system of sewers.

WHEREFORE, the Parties have hereto set their hands on the dates noted below.

Metropolitan St. Louis Sewer District Director of Engineering

Dated:

Title: Dated:

INTERGOVERNMENTAL RECIPROCITY AGREEMENT ESTABLISHING THE MUTUAL WAIVER OF FEES

WHEREAS, the Metropolitan St. Louis Sewer District ("MSD") values the relationship it has built with other governmental entities, and intends to comply with all relevant governmental ordinances;

WHEREAS, MSD appreciates that, as governmental entities, both MSD and the CITY OF RICHMOND HEIGHTS are political subdivisions of the State of Missouri, and that both are clothed with sovereign immunity;

WHEREAS, MSD recognizes that it is in the best interest of the public that additional fees not be imposed upon governmental entities, including MSD, when such entities undertake repairs, maintenance or new construction:

NOW. THEREFORE, the parties agree as follows:

- Neither MSD nor RICHMOND HEIGHTS shall charge the other party to this Agreement plan review, inspection or permit fees or building fees for projects that involve repairs, maintenance or new construction;
- This Agreement does not affect the applicability of sewer connection fees and Caulks Creek or Williams Creek impact fees which are necessary to join new or existing facilities to MSD's system of sewers.
- This agreement also will require MSD to notified the CITY OF RICHMOND HEIGHTS PUBLIC WORKS DEPARTMENT a minimum of 7days prior to the start of planned projects. In the case of emergency repair, MSD will notify the city within 24 hrs.

WHEREFORE, the Parties have hereto set their hands on the dates noted below.

Klen Metropolitan St. Louis Sewer District Dated: 2008 Director of Engineering City of Richmond Heigh

BILL NO. 5200

ORDINANCE NO. 5064

AN ORDINANCE APPROVING AN INTERGOVERNMENTAL RECIPROCITY AGREEMENT BETWEEN THE CITY OF RICHMOND HEIGHTS, MISSOURI AND THE METROPOLITAN SEWER DISTRICT ("MSD") ESTABLISHING A MUTUAL WAIVER OF FEES.

WHEREAS, the City of Richmond Heights, Missouri and "MSD" recognize that it is in the best interest of the public that additional fees not be imposed upon governmental entities, including MSD, when such entities undertake repairs, maintenance or new construction.

NOW, THEREFORE, BE IT ORDAINED BY THE CITY COUNCIL OF THE CITY OF RICHMOND HEIGHTS, MISSOURI, as follows:

SECTION 1. The Mayor of the City of Richmond Heights, Missouri, is authorized to execute on behalf of the City, an intergovernmental agreement with the Metropolitan Sewer District ("MSD"), for the purpose as follows:

1. Neither MSD or the City of Richmond Heights shall charge the other party in this agreement, fees or charges for plan review, inspection or permit fees or building fees for projects that involve repairs, maintenance or new construction.

2. This Agreement, as in the form attached hereto as Exhibit "A", and incorporated herein by reference, does not affect the applicability of sewer connection fees and Caulks Creek or Williams Creek impact fees which are necessary to join new or existing facilities to MSD's system of sewers.

SECTION 2. The City Clerk is authorized and directed to attest such signature and to attach the official seal of the City of Richmond Heights to said Agreement.

SECTION 3. This Ordinance shall be in full force and effect on the 31st day from and after its passage by the City Council.

PASSED and SIGNED this 3rd day of March, 2008.

ATTEST: me

PATRICIA S. VILLMER DEPUTY CITY CLERK

APPROVED AS TO EORM: a KENNETH J. HEINZ CITY ATTORNEY

First reading: Second reading:

February 19, 2008 March 3, 2008

ATTACHMENT F: UTILITY LETTERS

ATTACHMENT G:

GEOTECHNICAL REPORT

1033 CORPORATE SQUARE DRIVE ST LOUIS, MISSOURI 63132

April 10, 2020

Mr. Jeffrey Gratzer, PE HDR 401 South 18th Street, Suite 300 St. Louis, MO 63103

Re: Geotechnical Data Report for the Brentwood and Red Bud Avenue CSO Interceptor/Outfall Elimination Project Number: 11153 St. Louis, Missouri 7NT Number: D142-MO

Dear Mr. Gratzer,

7NT is pleased to submit the Geotechnical Data Report for the Brentwood and Red Bud Avenue CSO Elimination project in St. Louis, Missouri.

Field Investigations

The geotechnical field exploration was conducted by **7NT** in December 2018; June, July, October, and November 2019, and March 2020. Twenty (20) borings were drilled to maximum depths of 32.0 feet below ground surface (bgs). The boring depths are summarized in the *Boring Depths* table. The boring locations are shown in the attached boring location plan. Boring logs are attached.

The borings were drilled utilizing hollow stem augers powered by a drill rig. Standard Penetration Testing (SPT), utilizing a split spoon sampler, was conducted at 5.0-foot intervals. Soil samples were collected at the borings and sealed in jars to prevent moisture loss. The soil samples were transported to the **7NT** Laboratory for visual classification.

Bedrock was cored using diamond bits and triple tube, swivel type, M design barrels with split inner barrel, and water as a drilling fluid. The inner barrel was retrieved and split open to expose the core for logging after each run. The cores were placed in wooden boxes with hooked lids. Core samples were collected from the rock for testing.

Each core run was logged while still in one-half of the split inner core barrel, and the Rock Quality Designation was determined according to ASTM D6032.

The groundwater conditions were monitored during drilling and after removal of augers. The groundwater levels are provided in the individual boring logs attached to this report.

Boring No.	Total Depth (feet)	Boring No.	Total Depth (feet)
L19-1	24.3	L19-2	19.3
RB19-1	21.7	RB19-2	23.0
RB19-3	32.0	RB19-7	25.0
RB19-8	29.1	RB19-9	29.0
RB19-11	20.0	RB19-12	18.0
RB19-14	18.0	RB19-15	17.0
RB19-16	15.0	RB19-17	14.1
RB19-18	15.0	RB19-19	16.4
RB20-1	20.0	RB20-2	19.5
RB20-3	30.5	RB20-4	31.5

Boring Depths

Subsurface Soil Conditions

The subsurface conditions encountered consisted of topsoil and pavement overlaying predominantly lean and fat Clay soils. Bedrock was encountered in borings L19-1, L19-2, RB19-1, RB19-7, RB19-9, and RB20-1.

Lean Clay soils were encountered from immediately below the surface conditions to depths up to 25.0 feet below grade. SPT blow counts (N values) in the lean Clay ranged from 2 to 37 blows per foot (bpf) indicating a soft to hard consistency. The lean Clay was classified as CL under the Unified Soil Classification System (USCS).

Fat Clay soils were encountered from immediately below the surface conditions to depths up to 32.0 feet below grade. N values in the fat Clay ranged from 7 bpf to sampler refusal indicating a medium stiff to hard consistency. The fat Clay was classified as CH under the USCS.

Cobbles were encountered in RB20-4 from 25.0 to 30.0 feet bgs.

Shale bedrock was encountered in borings L19-1 at 17.0 feet bgs, L19-2 at 18.5 feet bgs, RB-1 at 18.0 feet bgs, and RB19-7 at 17.0 feet bgs. Limestone bedrock was encountered in boring RB19-9 at 18.5 feet bgs. N values in the Shale and Limestone bedrock where sampler refusal. Bedrock was encountered and cored in boring RB20-1 at 9.9 feet bgs. The bedrock consisted of 1.2 feet of Limestone over 8.9 feet of Claystone. The bedrock was light gray to gray in color, moderately strong. A void was encountered from 13.0 to 18.0 feet bgs.

Groundwater was encountered while drilling or at the completion of drilling and removal of augers in RB19-3 at 27 feet and in RB19-9 and RB19-19 at 16.0 feet. The groundwater conditions observed reflect the conditions at the time of our exploration only. Fluctuations of the groundwater table should be expected to occur both seasonally and annually due to variations in rainfall, evaporation, transpiration, construction activities, and other site-specific factors.

Generalized descriptions of the subsurface conditions encountered at the project site are given above. More detailed descriptions are given in the attached boring logs. The stratification lines shown on the soil boring logs do not represent exact geological planes but approximate transitions between soil types.

Assessment of site environmental conditions, including the detection of pollutants in the soil or groundwater, were beyond the scope of this exploration. However, had any contaminated soils been encountered, or any peculiar odors detected, the client would have been notified immediately.

Laboratory Test Results

Moisture content tests per ASTM D 2216, eighteen (18) Atterberg Limits test per ASTM D 4318, and five (5) sieve and hydrometer analysis tests per ASTM D 422 & ASTM D 1140 were conducted on selected representative split spoon samples. The *Soil Classification Test Results* table lists the Atterberg Limits and sieve and hydrometer analysis test results.

Boring		Soil Classification	Parti	cle Size [Distribut	ion	Atter	berg L	imits
No.	Depth, ft	USCS	Gravel %	Sand %	Silt %	Clay %	LL	PL	PI
RB19-1	8.5 – 10.0	Lean CLAY (CL)					45	18	27
RB19-1	13.5 – 15.0	Fat CLAY (CH)					53	21	32
RB19-3	13.5 – 15.0	Fat CLAY (CH)	0.0	6.5	33.0	60.5	52	29	23
RB19-8	8.5 – 10.0	Lean CLAY (CL)					40	21	19
RB19-8	18.5 – 20.0	Fat CLAY (CH)					51	28	23
RB19-12	3.5 – 5.0	Lean Clay (CL)	0.0	2.4	42.5	55.1	38	20	18
RB19-14	16.5 – 18.0	Fat CLAY (CH)					75	27	48
RB19-15	8.5 – 10.0	Fat CLAY (CH)	0.0	1.7	42.9	55.4	72	21	51
RB19-16	8.5 – 10.0	Lean CLAY (CL)					43	18	25
RB19-17	8.5 – 10.0	Fat CLAY (CH)					91	28	63
RB20-1	3.5 – 5.0	Fat CLAY (CH)					72	21	51
RB20-2	18.0 – 19.5	Fat CLAY (CH)					52	14	38
RB20-3	3.5 – 5.0	Lean CLAY (CL)	0.0	1.3	66.7	32.0	38	18	20
RB20-3	29.0 - 30.5	Fat CLAY (CH)					50	18	32
RB20-4	10.0 – 11.5	Fat CLAY (CH)					93	17	76
RB20-4	20.0 – 21.5	Fat CLAY (CH)					52	24	28
L19-1	8.5 – 10.0	Lean CLAY (CL)	0.0	1.8	71.7	26.5	35	21	14
L19-2	13.5 – 15.0	Fat CLAY (CH)					51	18	33

Soil Classification Test Results

One (1) Uniaxial Compressive Strength tests per ASTM D 7012 Method C were conducted on selected representative rock core samples. The *Rock Test Results* table lists the rock core test results.

Rock Test Results

Boring No.	Depth (feet)	Uniaxial Compressive Strength (psi)
RB20-1	10.1 – 10.5	16,959

Limitations of Liability

Discontinuities in soil type and geology may exist, including abrupt strata changes and soil strength variations. The extent of these variations may not be fully determined from the boring or site reconnaissance. Additional variations may not become apparent until mass excavation commences.

We appreciate the opportunity to offer these services. If you have any questions regarding this report or if we may be of further assistance to you, please contact our office at 937-435-3200.

Respectfully, **7NT**

Lawer M Huck

Lauren M Hucek Engineering Technician

May Oakes

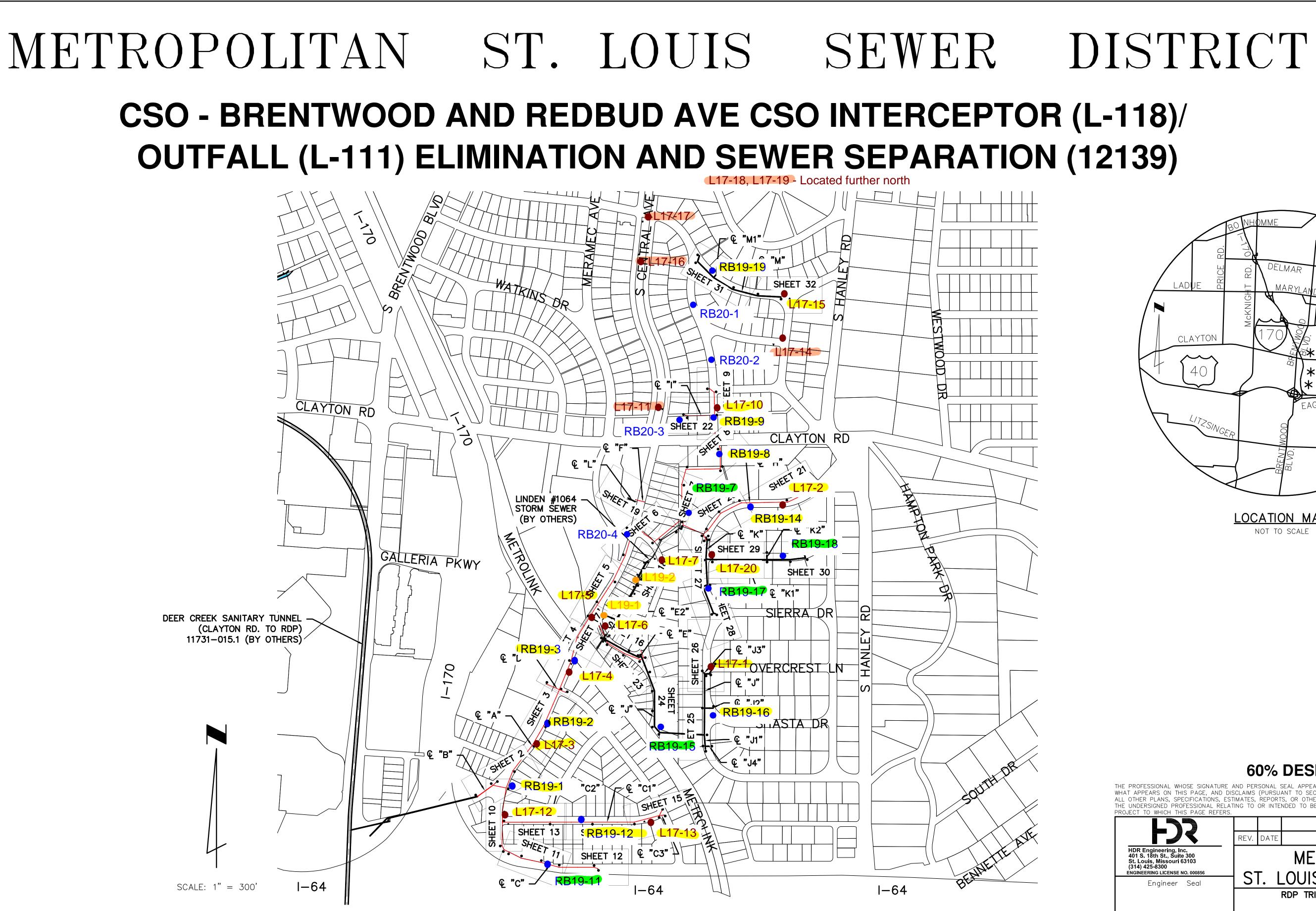
Monica M. Oakes Project Manager

Attachments: Boring Location Plan Logs of Test Borings Laboratory Test Results

DEER CREEK SANITARY TUNNEL

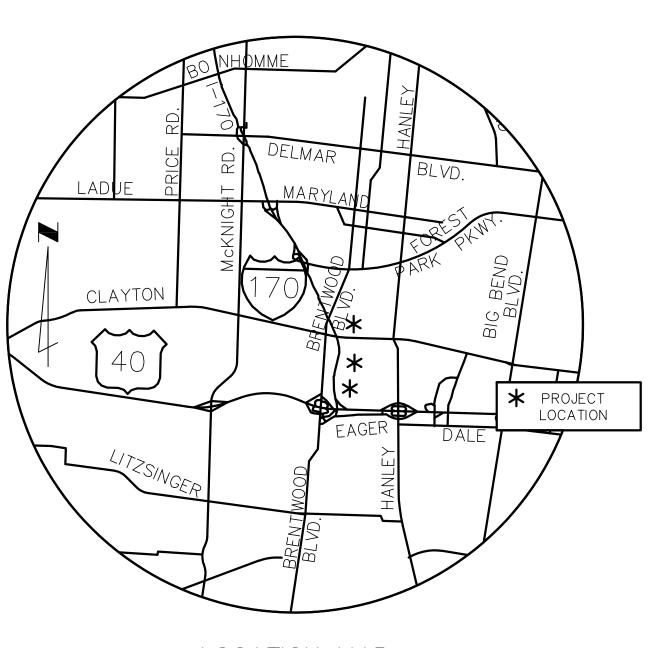
SCALE: 1'' = 300'

(CLAYTON RD. TO RDP)


1-64

11731-015.1 (BY OTHERS)

NOTE:


UNDERGROUND FACILITIES, STRUCTURES AND UTILITIES HAVE BEEN PLOTTED FROM AVAILABLE SURVEYS AND RECORDS. THEREFORE; THEIR LOCATIONS MUST BE CONSIDERED APPROXIMATE ONLY. THERE MAY BE OTHERS, THE EXISTENCE OF WHICH IS NOT PRESENTLY KNOWN. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO HAVE ALL UTILITIES LOCATED IN THE FIELD PRIOR TO EXCAVATION OR CONSTRUCTION.

Path: C:\pwworking\central01\d1119239\ Plotted on: 3/15/19 @ 11:15:21AM by RFERGUSO

On plans at 60%

Outside plan areas

LOCATION MAP NOT TO SCALE

60% DESIGN

THE PROFESSIONAL WHOSE SIGNATURE AND PERSONAL SEAL APPEAR HEREON, ASSUMES RESPONSIBILITY ONLY FOR WHAT APPEARS ON THIS PAGE, AND DISCLAIMS (PURSUANT TO SECTION 327.411 RSMO) ANY RESPONSIBILITY FOR ALL OTHER PLANS, SPECIFICATIONS, ESTIMATES, REPORTS, OR OTHER DOCUMENTS OR INSTRUMENTS NOT SEALED BY THE UNDERSIGNED PROFESSIONAL RELATING TO OR INTENDED TO BE USED FOR ANY PART OR PARTS OF THE PROJECT TO WHICH THIS PAGE REFERS.

	rev. date	. DESC	RIPTION	BY
HDR Engineering, Inc. 401 S. 18th St., Suite 300 St. Louis, Missouri 63103 (314) 425-8300 ENGINEERING LICENSE NO. 000856	ST	METROP	OLITAN /ER DISTRI(.Т
Engineer Seal		RDP TRIBUTARIES CSO TUI 12441–0 ST. LOUIS ST. LOUIS COUN	(DEER CREEK) NNEL D15.1 CITY &	<u> </u>
JEFFERY A. GRATZER, P.E. CIVIL ENGINEER P.E. No. 1999137696 DATE:	SEWE	L—111 (LINDEN) ER SEPARATION OVER SHEET	DesignedJ.A.G. DrawnR.K.F. CheckedD.D.H. DateMAY_2C Sheet No1of	
3/28/2019	BASE MA	P: 19K, 20K	12441_COVER SHEET	

	7	NT)F TEST 10.: <u>L19-1</u>			
	IENT: F						DA	TE STAR	red 1			(ING P	COMPLETEI			
PF	ROJECT	Brent		& Red Bud			TE	MPERATU	JRE/W	'EATH	IER:		30 Degrees			
		-					NC						EAST:			
	ROJECT				DRILLER/INSP RIG TYPE: CM			EVATION: RE SIZE:					LINE: <u> </u>			
					<u></u>		00			~			BLOWS			
	DEPTH SCALE (FEET)	HCK HCK ESS	GRAPHIC LOG		SAMPL	E DESCRI	PTION			SAN			PER	SPT	M/C	
шш	E B S F	Z≓z	GR						NO.		/PE EC	DEPTH (FEET)	6 INCHES	N	(%)	PP*
	-	0.6 0.4	P. N. A.			- #\										
	1 -	0.4		Medium	GATE BASE (5 Stiff Gray CLA	Y, moist, little	fine to coarse	grain								
	2				ce gravel (CL)			•								
	-3															
	-4	6.0							1	∇	SS	3.5	3 - 4 - 4	8	16.4	
	⊢ <u>·</u>	0.0								МП		5				
	5 															
	6															
	7			Very Sof	t Brown CLAY	moist few fir	ne to coarse gr	ain								
	8			sand (CL			ne to obtaile gr									
	9								2		SS	8.5	1 - 1 - 1	2		
	-9	5.0								X		10				
	10									P						
	-11															
	-12			Stiff Dorl	Croy CLAX	noiot littlo fin	e to coarse gra	in								
				sand (CL	.)		e lo coarse gra									
	-								3		SS	13.5	4 - 6 - 8	14		
		5.0								X		15				
	15									Р						
					<u> </u>											
				Redaisn	Gray SHALE											
	-								4		SS	18.5	36 - 48 - 50/2"	50+	11.8	
	—19 —									X		19.7			_	
	20															
	-21	7.3														
	-															
	-23								5		SS	23.5	36 - 50/4" -	50+		
0/20	24			Boring T	erminated at 2	4 3 feet			Ũ	Й	55	24.3				
4/1(25			Doning it		4.0 1001										
<u>GD</u>	-26															
LATE	27															
EMP	-															
TTU	28 															
	29															
9. 9 * 1		Dono	trom	otor Dood	ing Upper	fined Com	pressive Str	onath T	000/0							
<u></u>				ervations:			picooive Oll	BORIN		•			SAMPI		F	
	DATE	TIM		SING DEPTH	CAVE-IN	BAILED	WATER LEVEL	HSA - H	ollow S	Stem	– Augei	rs	SAMPI			
	2/4/18	12:0	0	23.5		_,	None 🗸	CFA - C	ontinu	ous F	light A	Augers	ST - She	lby Tub	e	
⊮ <u>1</u>	2/4/18	12:1	5	23.5	15.0		None T	DC - Dri MD - Mu	id Drilli	asing: ings	5		CA - Con	itinuous	s Auger	
J V R	emarks:						·						RC - Roc _ CU - Cut			
													– CU - Cut – CT - Con		Tube	
ш [1			

	LIENT: <u>H</u>		wood {	Red Bud				DATE STAR TEMPERATI		BO 2-17-18	RING	DF TES NO.: <u>L19-2</u> COMPLETE st, 40 Degrees	(Shee	et 1/1)	
	OCATION ROJECT				RILLER/INSF	P: FS/CC		NORTH: ELEVATION	:			EAST: LINE:			
	ORING M					/IE 55 Track		CORE SIZE:				HAMMER: A	Auto		
ELEV.	(FEET) DEPTH SCALE (FEET)	LAYER THICK- NESS	GRAPHIC LOG		SAMPL	E DESCRI	PTION		NO.	SAMPL	E DEPTH (FEET)	BLOWS PER 6 INCHES	SPT N	M/C (%)	RQD PP*
	_	0.2 0.1	7/////					/Г	-						
	-1	0.1			GATE BASE (2			/							
	- 2 3 -	3.2			vn CLAY, mois				1	∽∎ ss	3.5	2 - 2 - 2	4	18.2	
	4 5 6 7	6.5		Medium	Stiff Brown Sa	ndy CLAY, mo	oist (CL)		1	33	5	2-2-2	4	10.2	
				Ven/Stiff	Brown/Gray	CLAY, moist ((2	ss	8.5 10	2 - 3 - 3	6		
	- 	8.5		very Sun	blown/Glay	SLAT, MOISE (UN)		3	ss	13.5 15	4 - 7 - 10	17	14.9	
	- 	0.8			Gray SHALE				4	∑∎ ss	18.5 19.3	10 - 50/4" -	50+		
TE.GDT 4/10/20	-20 -21 -22 -23 -23 -24 -25 -25 -26			Boring	erminated at 1	9.3 Teet									
2-MO.GPJ_7NT_TEMPLA *	-27 -28 -29 - Pocket	Pene	trome	eter Read	ing - Uncor	fined Com	pressive	Strength, T	ons/S	Sq.Ft.					
LOG REPORT D142				rvations: SING DEPTH 18.5 18.5	CAVE-IN 14.5	BAILED	WATER LEV	BORI	NG ME Iollow & Continue iving C	THOD Stem Augo ous Flight asings	ers Augers	SAMP SS - Spl ST - She CA - Cor RC - Ro CU - Cu - CU - Cu	elby Tub ntinuous ck Core ttings	n be s Auger	

		numer de									LC	G C	OF TES	Г ВС	DRI	١G
)) 7	NT											NO.: <u>RB19-</u>			
								ATE START	-				COMPLETE	D: <u>6-27</u>	-19	
				& Red Bud									EAST:			
	OJECT				ORILLER/INSF	: JS/CC	E	ORTH: LEVATION:					LAST.			
BC	RING	IETHO	D: <u>HS</u>	SA F	RIG TYPE: <u>CN</u>	1E 45		ORE SIZE:					HAMMER: /	Auto		
∑.E		я К К К К К К К К К К К К К К К К К К К	DHC			E DESCRI				SAN	APLE	Ξ	BLOWS PER	SPT	м/с	RQD
	DEPTH SCALE (FEET)	N T A	GRAPHIC		SAMPL	E DESCRI	FIION	-	NO.		YPE	DEPTH (FEET)	6 INCHES	N	(%)	PP*
	-	0.5	<u>x¹ 1₁ x</u>	- · · · · · · ·	L (6") wn CLAY, few	a and mariat (1	M	SS	0	1 - 1 - 1	2		
	1 -	1.0		1	Stiff Brown CL					Д						
	2			Medium	SUII BIOWII CL	AT, Some Sill	l, moist (CL)									
	3								_							
	-4								2	M	SS	3.5 5	2 - 2 - 2	4	25.1	
	5									Δ						
	6															
	-															
	-	12.0														
	8 								3		SS	8.5	2 - 3 - 5	8	22.1	
	-9								U U	X		10				
	10															
	-11															
	-12															
				Stiff Brov	wn and Gray C	LAY, moist (C	CH)		4	∇	SS	13.5	6 - 7 - 9	16	20.5	
	- 15									\wedge		15				
	-	4.5														
	16 															
	17 															
				Gray SH	ALE, weathere	ed			5		SS	18.5	48 - 50/4" -	50+		
	19								5	X	33	20	40-50/4 -	50+		
	20	4.0								Д						
	-21															
	22			Boring T	erminated at 2	1 7 foot			6	×	SS	21.5 21.7	50/2"	50+		
				Bonng n								21.7				
/10/2(-															
DT 4	25 															
TE.G	26 															
MPLA	27 															
비	28															
	29															
BORING LOG REPORT D142-M0.GPJ 7NT TEMPLATE.GDT 4/10/20		Dono	trom	otor Dood	ling - Uncon	fined Com	nressive S	tronath T	000/0		+					
145-1 Gr				ervations:	ing - Oncon		PICSSIVE O						SAMP	LE TYP	۶E	
				ASING DEPTH	CAVE-IN	BAILED	WATER LEVE	L HSA - H	ollow	Stem	Auge		SS - Spl			
							_	CFA - Co DC - Driv	ontinu vina C	ous F asina	light A s	Augers	ST - She	elby Tub	e	
								MD - Mu	d Drill	ings			CA - Co RC - Ro			
ଅ _ନ Re	marks:												_ CU - Cu	ttings		
													– CT - Co	ntinuous	Tube	

CLENT: HOR BORING NO: EB19-02 (Sheet 1/1) CLENT: HOR DATE STATED: COMPLETED: 627.19 IDOCATION: SL Louis, MO DBILLER/INSP: JS/CC DATE STATED: COMPLETED: 627.19 BORING METHOD: ISLA RIG TYPE: CALE 45 COMPLETED: ELEVATION: LINE: BORING METHOD: ISLA RIG TYPE: CALE 45 CORE SIZE: HAMMER: Auto DOIL 100: SAMPLE DESCRIPTION SAMPLE BCRING NO: TOPSOIL (*) Image: State S			an a									LO	GC	OF TES	ТВС	DRI	NG
PROLECT: Tentwood & Red Bud TEMPERATURE/WEATHER: Sumy DOCATION: SLOWS MO DRILER/INSP: SS/CC EAST LINE:		9) 7	NT														
Location: St. Louis, MO DRILEPRINSP: JS/CC NORTH: EAST: BORING METHOD: HSA RIG TYPE: CME 45 CORE SIZE: LINE: HAMMER: Auto Juint Line: CORE SIZE: SAMPLE BUOWS PER CIECTON SAMPLE BUOWS PER CIECTON SAMPLE Juint Line: TOPSOIL (@') TOPSOIL (@') 1 MS 1.5 2.2.2.4 6 23.7 -1 -2 -3 -3 1.5 2.2.2.4 6 23.7 -3 -4 -4 -2 SS 3.5 23.3 6 -6 -6 -6 -6 -6 -6 -6 -7 13.0 -4 8 -9 -10 -1 -4 -5 5 23.3 6 -4 -6 -6 -6 -7 13.0 -7 13.0 -7 13.0 -7 13.0 -7 13.0 -7 13.0 -7 14 -7 15 -7 12.3 -10 -11 -1 -1 -1 -1 -1 -1 -1<														COMPLET	ED: <u>6-27</u>	7-19	
PROLICE NO. DILLEPANO DRILLEPINSP: JSCC CORE SIZE: CORE			-											FAST			
BORING METHOD: HSA RIG TYPE: CME 45 CORE SIZE: HAMMER: Auto August by the second of t						ORILLER/INSF	: JS/CC	i	ELEVATION:								
Line Line Description Out of the constraint	BC		IETHO	D: <u>HS</u>	A F	RIG TYPE: <u>CN</u>	/IE 45							HAMMER:	Auto		
0.5 0	12		ЯŸХ	с НС С НС				DTION			SAN	ЛРLЕ	E		SPT	M/C	RQD
0.5 0			LAY NE	LO		SAMPL	E DESCRI	PTION		NO	T	YPE			N		
1 1		_			L						M	SS	0			23.7	
3 2 3 5 2.3.5 2.3.3 6 6 7 13.0 3 3 5 8.5 3.4.4 8 9 9 10 3 5 8.5 10 3.4.4 8 11 11 11 12 13 14 15 15 3.5.12 17 13 14 Very Stiff Light Brown CLAY, moist (CL) 4 13 5 15 3.5.12 17 16 17 8.0 5 15 20.39.40 79 12.3 19 20 1.5 Hard Gray Silty CLAY, moist (CL) 6 15 5 23 10.11.26 37 20.0 21 1.5 Boring Terminated at 23.0 feet 6 15 5 23 10.11.26 37 20.0		-1			Medium	Stiff Brown CL	AY, few sand	, moist (CL)			Ň		1.5				
2 X SS 3.5 2 - 3 - 3 6 6 -6 -6 -6 -7 13.0 9 9 -7 13.0 3 X SS 3.5 2 - 3 - 3 6 10 -10 -10 -3 X SS 8.5 3 - 4 - 4 8 11 -12 -13 -14 Very Stiff Light Brown CLAY, moist (CL) 4 X SS 13.5 3 - 5 - 12 17 14 -16 -16 -16 -5 SS 18.5 20 - 39 - 40 79 12.3 19 -20 -1.5 -1.5 -1.5 -1.1 - 2.6 37 20.0 21 -21 -5 -5 23 10 - 11 - 2.6 37 20.0 22 -1.5 Boring Terminated at 23.0 feet -6 SS 21.5 10 - 11 - 2.6 37 20.0		2															
-4 -5 -6 -5 -5 -7 13.0 -7 13.0 -3 -5 -5 -7 12.3 -7 -7 12.3 -7 -7 12.3 -7 -7 12.3 -7 -7 12.3		3															
-5 -10 -11 -1		4								2	∇	SS		2 - 3 - 3	6		
-7 13.0 -8 -9 -10 -11 -12 -13 -14 Very Stiff Light Brown CLAY, moist (CL) -15 -15 -16 -17 -18 8.0 -19 -21 -15 -15 -16 -17 -18 8.0 -17 8.0 -18 8.0 -19 -20 -21 -3 -22 1.5 Hard Gray Silty CLAY, moist (CL) -21 -5 -22 1.5 Boring Terminated at 23.0 feet		- 5									Å		5				
-7 13.0 -8 -9 -10 -11 -12 -13 -14 Very Stiff Light Brown CLAY, moist (CL) 4 5 -18 -14 -15 -16 -17 -18 -19 -20 -21 -22 1.5 Hard Gray Silty CLAY, moist (CL) 6 -23 Boring Terminated at 23.0 feet		-															
-8 -9 -10 -11		-6															
9 3 3 5 8.5 3 - 4 - 4 8 11 11 12 13 4 5 10 3 - 5 - 12 17 13 14 Very Stiff Light Brown CLAY, moist (CL) 4 5 13.5 3 - 5 - 12 17 16 16 17 8.0 5 5 5 18.5 20 - 39 - 40 79 12.3 19 20 21 1.5 Hard Gray Silty CLAY, moist (CL) 6 5 21.5 10 - 11 - 26 37 20.0 23 Boring Terminated at 23.0 feet 6 5 23 10 - 11 - 26 37 20.0		7	13.0														
9 10 10 10 10 11 12 13 11 12 13 14 Very Stiff Light Brown CLAY, moist (CL) 4 SS 13.5 3 - 5 - 12 17 16 16 16 5 SS 18.5 20 - 39 - 40 79 12.3 20 20 20 20 5 SS 18.5 20 - 39 - 40 79 12.3 22 1.5 Hard Gray Silty CLAY, moist (CL) 6 SS 21.5 10 - 11 - 26 37 20.0		8															
11 12 13 14 14 Very Stiff Light Brown CLAY, moist (CL) 15 15 16 5 17 8.0 18 8.0 19 5 20 5 21 1.5 Hard Gray Sitty CLAY, moist (CL) 6 SS 21 1.5 Boring Terminated at 23.0 feet		-9								3	V	SS		3 - 4 - 4	8		
-12 -13 -14 Very Stiff Light Brown CLAY, moist (CL) 4 5 SS 13.5 3 - 5 - 12 17 -15 -16 -17 8.0 -5 SS 18.5 20 - 39 - 40 79 12.3 -19 -20 -21 -21 -15 -5 SS 18.5 20 - 39 - 40 79 12.3 -22 -1.5 Boring Terminated at 23.0 feet 6 SS 21.5 10 - 11 - 26 37 20.0											Δ						
-12 -13 -14 Very Stiff Light Brown CLAY, moist (CL) 4 5 SS 13.5 3 - 5 - 12 17 -15 -16 -17 8.0 -5 SS 18.5 20 - 39 - 40 79 12.3 -19 -20 -21 -21 -15 -5 SS 18.5 20 - 39 - 40 79 12.3 -22 -1.5 Boring Terminated at 23.0 feet 6 SS 21.5 10 - 11 - 26 37 20.0																	
-13 Very Stiff Light Brown CLAY, moist (CL) 4 SS 13.5 3 - 5 - 12 17 -15 -16 -17 8.0 5 SS 18.5 20 - 39 - 40 79 12.3 -19 -20 -21 -22 1.5 Hard Gray Silty CLAY, moist (CL) 6 SS 21.5 10 - 11 - 26 37 20.0		-															
-14 Very Stiff Light Brown CLAY, moist (CL) 4 SS 13.5 3 - 5 - 12 17 -15 -16 -16 -17 -18 -16 -16 -17 -19 -20 -21 -21 -15 -15 SS 18.5 20 - 39 - 40 79 12.3 -21 -22 -1.5 Hard Gray Silty CLAY, moist (CL) 6 SS 21.5 10 - 11 - 26 37 20.0 -23 Boring Terminated at 23.0 feet -15 SS 21.5 21.5 -10 - 11 - 26 37 20.0		-															
-14 -15 15 15 -15 -16 -17 8.0 -18 -17 8.0 5 SS 18.5 20 - 39 - 40 79 12.3 -19 -20 -21 -15 -15 6 SS 21.5 10 - 11 - 26 37 20.0 -22 1.5 Boring Terminated at 23.0 feet 6 SS 21.5 23 10 - 11 - 26 37 20.0		13 			Von Stiff	flight Drown (NAX maint (4		22	13.5	3 - 5 - 12	17		
-16 -17 8.0 -18 8.0 -19 -18 -20 -19 -21 -21 -22 1.5 Hard Gray Silty CLAY, moist (CL) -23 Boring Terminated at 23.0 feet		14 			very Sun	r Light Brown C	LAY, MOIST (UL)		-	X	00		J-J-12			
$\begin{bmatrix} -17 \\ -18 \\ -19 \\ -20 \\ -21 \\ -22 \\ 1.5 \\ -23 \\ -21 \\ -22 \\ 1.5 \\ -23 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -22 \\ -23 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -21 \\ -22 \\ -21 \\ -21 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -22 \\ -21 \\ -2$																	
-18 8.0 -19 -19 -20 -21 -21 -21 -22 1.5 Hard Gray Silty CLAY, moist (CL) -23 Boring Terminated at 23.0 feet		16															
-18 -19 5 SS 18.5 20 - 39 - 40 79 12.3 -20 -21 -21 -21 -21 6 SS 21.5 10 - 11 - 26 37 20.0 -22 1.5 Boring Terminated at 23.0 feet 6 SS 21.5 10 - 11 - 26 37 20.0																	
-19 -20 -21 -21 -21 -21 -22 1.5 Hard Gray Silty CLAY, moist (CL) 6 SS 21.5 10 - 11 - 26 37 20.0 -23 Boring Terminated at 23.0 feet 6 SS 21.5 10 - 11 - 26 37 20.0			8.0														
-20 -21 -21 -22 1.5 Hard Gray Silty CLAY, moist (CL) 6 SS 21.5 10 - 11 - 26 37 20.0 -23 Boring Terminated at 23.0 feet 6 SS 21.5 23 10 - 11 - 26 37 20.0		- 10								5	∇	SS		20 - 39 - 40	79	12.3	
-21 -22 1.5 Hard Gray Silty CLAY, moist (CL) 6 SS 21.5 10 - 11 - 26 37 20.0 -23 -23 Boring Terminated at 23.0 feet 6 SS 21.5 23 10 - 11 - 26 37 20.0		-									Ň		20				
-22 1.5 Hard Gray Silty CLAY, moist (CL) 6 SS 21.5 10 - 11 - 26 37 20.0 -23 Boring Terminated at 23.0 feet 6 SS 21.5 10 - 11 - 26 37 20.0		20															
23 Boring Terminated at 23.0 feet		21 								6		66	21.5	10 11 26	37	20.0	
Boring Terminated at 23.0 feet		22	1.5		Hard Gra	ay Slity CLAY,	moist (CL)			0	X	33		10 - 11 - 20	57	20.0	
		23			Boring Te	erminated at 2	3.0 feet				\square						
	20	-24			, C												
	4/10/	25															
	GDT																
	ATE	-															
	EMPL	-															
	TTN	- 28															
		29 															
* Pocket Penetrometer Reading - Unconfined Compressive Strength, Tons/Sq.Ft.	9. 94 × 1	 Pocket	Pene	trome	eter Read	ing - Uncon	fined Com	pressive S	Strenath T	ons/S	Sa.Fi	t.		<u> </u>			L
Borning Borning Borning Sample Type Borning Borning Sample Type	Gr										· ·			SAM	<u>PLE TY</u> F	<u>PE</u>	
DATE TIME CASING DEPTH CAVE-IN BAILED WATER LEVEL HSA - Hollow Stem Augers SS - Split Spoon						CAVE-IN	BAILED		= HSA - H	ollow S	Stem	Auger	S	SS - S	olit Spoor	n	
CFA - Continuous Flight Augers CFA - Continuous Flight Augers	ан Ш			_				-	🔽 DC - Dri	ving C	asing		ugers				
Image: Constraint of the second se	<u>الا</u>							-	👿 MD - Mu	ıd Drilli	ings					-	
Remarks: CU - Cuttings	Re	emarks:												_ CU-C	uttings		
Č CT - Continuous Tube														– CT - C	ontinuous	s Tube	

											LC	G C	OF TEST	Г ВС	DRI	NG
Q		NT										RING	NO.: <u>RB19-</u>			/1)
	ENT: <u>H</u> OJECT:		wood 8	Red Bud				DATE STAF				Overca	COMPLETE st, 80 Degrees	D: <u>7-3-</u>	19	
LO	CATION	I: <u>St.</u> L	ouis, N	10			1	NORTH:					EAST:			
	OJECT RING M				DRILLER/INSF RIG TYPE: CN			ELEVATION					LINE: HAMMER: <i>A</i>	Auto		
ELEV. (FEET)						E DESCR					MPLE	=	BLOWS	SPT		RQD
	E S E	⊴≒z	GR GR						NO.	T F	YPE REC SS	DEPTH (FEET)	6 INCHES	N	(%)	PP*
	1 2 3 4 5 6 7	13.0		Soft to M	ledium Stiff Br	own CLAY, li	ttle sand, moi	st (CL)	2		SS	0 1.5 3.5 5	3 - 4 - 5	3	20.9	
	8 9 10 11 12								3	X	SS	8.5 10	3 - 4 - 5	9	24.8	
				Hard Red (CH)	dish Brown CL	AY, few fine	to coarse san	d, moist	4	X	SS	13.5 15	4 - 14 - 16	30	15.8	
		19.0							5		SS	18.5 20	26 - 50/4" -	50+		
	23 24 25 26 27 27							Ī	6 <u>7</u>		SS	23.5 25	33 - 50/5" -	50+	10.0	
* P Gro 7/3 Rer	-28 -29 -30 -31 -32 -33			Boring Te	erminated at 3	2.0 feet			8		SS SS	28.5 30 30.5 31.9	17 - 50/2" - 20 - 38 - 50/4"	50+ 50+		
	34															
* P	ocket	Pene	trome	eter Read	ing - Uncor	fined Corr	npressive S	Strength,	Tons/	 Sq.F	t.	1	I	1	1	
			Obse	rvations: SING DEPTH		BAILED	WATER LEVE	BOR EL HSA -	LING ME Hollow Continu	ETHO Stem	D Auge		SS - Spl		ı	
Rer	marks:							V DC - D V MD - N	riving C	Casing	IS IS		ST - She CA - Co RC - Ro _ CU - Cu _ CT - Co	ntinuous ck Core ttings	s Auger	

Ó	7	NT								OF TEST			
	1.								RING	NO.: <u>RB19-(</u>	•		/1)
	ENT: <u>F</u> OJECT		wood 8	k Red Bud	DATE START	-			Sunny,	COMPLETEI Windy, 40 Degr		7-19	
					NORTH: ELEVATION:					EAST: LINE:			
	OJECT RING N				CORE SIZE:					HAMMER: A	uto		
Σ.E.	E II (R S S S S S S S S S S S S S S S S S S S	GHIC				SAN	/IPLE	1	BLOWS	SPT	M/C	RQD
ELE (FEE	DEPTH SCALE (FEET)	A H	GRAPHIC LOG	SAMPLE DESCRIPTION	1	NO.		YPE EC	DEPTH (FEET)	PER 6 INCHES	N	(%)	PP*
	-	0.6	<u></u>	TOPSOIL (7") Soft Brown CLAY, few sand, trace gravel, mo	piet (CL)								
						1	M	SS	1 2.5	WOH - 2 - 2	4		
	2 						Д						
	-3					2		SS	3.5	1 - 2 - 2	4		
	4	7.4					X		5				
	5												
	6 					3	\bigvee	SS	6 7.5	3 - 3 - 2	5		
	-7						Д						
				Stiff Brown CLAY, trace sand, trace gravel, n	noist (CL)	4		SS	8.5	2 - 4 - 7	11		
	9 						X		10				
	10 												
	11 	6.5											
	13 -					5		SS	13.5	6 - 8 - 10	18		
	14 -			Very Stiff Brown CLAY, trace sand, trace gra	vel moist		Х		15				
	15 -	2.5		(CL)									
	16 	2.0											
	-17			Brown and Gray SHALE, weathered									
						6		SS	18.5	21 - 37 - 37	74		
	19 						Х		20				
	21 	8.0											
	-22												
	-23					7		SS	23.5	45 - 49 - 50/5"			
POKING COG KEPOKI D142-M0.669 / NI LEMPLALE.690 4/10/20 11/1 11/2 Rer 11/2 1/2	-24						X		25				
- - 4	-25			Boring Terminated at 25.0 feet									
	26 												
	27 												
	-28												
5	—29 —												
≥ * P				eter Reading - Unconfined Compressiv			· ·						
Gro	ound V				BORIN LEVEL HSA - H			_	s	SAMP			
	7/2019	TIME		SING DEPTH CAVE-IN BAILED WATER 23.5 No	ne <u>⊽</u> CFA - C	ontinu	ous F	light A		SS - Spli ST - She	lby Tub	be	
2 11/7	7/2019			20.1 No	ne 👤 DC - Dri V MD - Mu	ving C id Drill	asing ings	s		CA - Cor	ntinuou	s Auge	r
Rer	marks:									RC - Roo _ CU - Cut	tings		
										– CT - Cor		s Tube	

BORING NO:	Ó	7	NT														
LOCATION: St. Louis, MO Diff. Inc. EAST: PROJECT NO. D142-MO PRICULER/INSP: CC/CPIII EVATION: LINE: INNETHOD. BORING METHOD. HSA RIG TYPE: CME 45 CORE SIZE: HAMMER: Auto Viau Line: LINE: HAMMER: Auto Viau Line: File BUOWS SPT MCC ROD Viau Line: SAMPLE DESCRIPTION SAMPLE BLOWS SPT MCC ROD Viau Line: ASPHALT (7) ASORECATE BASE (2.57) Soft Brown CLAY, some sand, trace gravel, moist (CL) 1 SS 3.5 2 - 2 - 2 4 -2 ASORECATE BASE (2.57) Soft Brown CLAY, little silt, trace sand, moist (CL) 1 SS 3.5 2 - 2 - 2 4 -4 7.7 ASORECATE BASE (2.57) Soft Brown CLAY, little silt, trace sand, moist (CL) 1 SS 3.5 2 - 2 - 2 4 -5 5.0 Medium Stiff Brown CLAY, little silt, trace sand, moist (CL) 3 SS 13.5 4 - 5 - 5 10	CLI	ENT: <u>H</u>	DR					DA	TE STAR	ΓED: <u>7</u>					•		/ 1)
PROCECT NO. DRILLEAND: ELEVATION: LINK: HAMMER Auto BORING METHOD: HSA RIG TYPE: CME 45 CORE SIZE: HAMMER Auto Juit Link Street SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION Juit Link Street ASPHALT (7) ASGREGATE BASE (2.5') No. TYPE (FEED) BLOWS ST ST M/C RQD PP* AGGREGATE BASE (2.5') Soft Brown CLAY, some sand, trace gravel, moist (CL) 1 SS 3.5 2 - 2 - 2 4																	
BORING METHOD: HSA RIG TYPE: CME 45 CORE SIZE: HAMBER: Auto Aug High Line Soft Brown SAMPLE DESCRIPTION SAMPLE BLOWS PEC SPT M/C RQD Aug High Line Soft Brown CLAY, some sand, trace gravel, moist (CL) N N/C Pec BLOWS PEC SPT M/C RQD 2 3						RILLER/INSF	: CC/CPIII	EL	EVATION:					LINE:			
$\begin{bmatrix} -1 & 0.6 & 0.2 & -ASPHALT (7') &$				D: <u>HS</u>										HAMMER: A	uto	1	
$\begin{bmatrix} -1 & 0.6 & 0.2 & -ASPHALT (7') &$		E H E	ЯЧХ	ы В НС				DTION			SAN	APLE	Ξ		SPT	м/с	RQD
-1 0.6 0.2 -ASPHALT (7") -2 AGREGATE BASE (2.5") -3 -4 -5 -4 -5 7.7 -6 -7 -6 -7 -7 -8 -9 -9 -10 5.0 -11 5.0 -12 -7 -7 -8 -9 -9 -10 5.0 -11 5.0 -12 -13 -14 -15 -15 5.0 -16 5.0 -17 -16 -18 -17 -18 -16 -19 -17 -16 5.0 -17 -16 -18 -16 -19 -17 -18 -18 -19 -17 -16 -10 -17 -16 -18 -19 -19 -20 -21 5.0		SCA FEI	LAY NE	LO		SAMPL	E DESCRI	IPTION		NO.							
$\begin{bmatrix} 1 \\ -3 \\ -3 \\ -4 \\ -5 \\ -7 \\ -6 \\ -6 \\ -6 \\ -7 \\ -6 \\ -6 \\ -7 \\ -8 \\ -7 \\ -8 \\ -7 \\ -8 \\ -7 \\ -8 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9$		 -										EC	(FEET)	0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 	0.2					aravel moist (
$\begin{bmatrix} 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 10 \\ 11 \\ 5.0 \\ 11 \\ 5.0 \\ 12 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 15 \\ 16 \\ 5.0 \\ 12 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 15 \\ 15 \\ 15$		2			OUIT DIOV			gravel, molst (OL)								
$\begin{bmatrix} 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 10 \\ 11 \\ 5.0 \\ 11 \\ 5.0 \\ 12 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 15 \\ 16 \\ 5.0 \\ 12 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 15 \\ 15 \\ 15$		-3								1		SS	3.5	2-2-2	4		
$\begin{bmatrix} -6 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ 12 \\ -12 \\ -13 \\ -14 \\ -15 \\ -16 \\ -5.0 \\ -17 \\ -18 \\ -19 \\ -20 \\ -21 \\ -21 \\ -23 \\ -24 \\ -23 \\ -24 \\ -25 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -28 \\ -27 \\ -27 \\ -28 \\ -27 \\ -27 \\ -28 \\ -27 \\ -27 \\ -28 \\ -27 \\ -27 \\ -28 \\ -27 \\ -27 \\ -28 \\ -27 \\ -27 \\ -28 \\ -27 \\ -27 \\ -28 \\ -27 \\ -27 \\ -28 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -28 \\ -27 \\ $		4	7.7								M						
$-\frac{8}{9}$ Medium Stiff Brown CLAY, little silt, trace sand, moist (CL) 2 SS 8.5 $3 - 3 - 4$ 7 26.0 -10 -11 5.0 Stiff Brown CLAY, little silt, irace sand, moist (CL) 3 SS 13.5 $4 - 5 - 5$ 10 -14 Stiff Brown CLAY, little silt, little sand, moist (CL) 3 SS 13.5 $4 - 5 - 5$ 10 -16 5.0 Very Stiff Brown CLAY, trace fine to medium sand, moist (CL) 3 SS 18.5 $5 - 9 - 10$ 19 23.6 -18 Very Stiff Brown Slity CLAY, trace fine to medium sand, moist (CL) 4 SS 18.5 $5 - 9 - 10$ 19 23.6 -20 -21 5.0 -41 -52 5.0 $10 - 50/5^{\circ} - 50 + 13.6$ -22 -23 -41 -50 $50 + 13.6$ $50 + 13.6$ $50 + 13.6$ -24 -27 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Γ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		5									Γ						
$-\frac{8}{9}$ Medium Stiff Brown CLAY, little silt, trace sand, moist (CL) 2 SS 8.5 $3 - 3 - 4$ 7 26.0 -10 -11 5.0 Stiff Brown CLAY, little silt, irace sand, moist (CL) 3 SS 13.5 $4 - 5 - 5$ 10 -14 Stiff Brown CLAY, little silt, little sand, moist (CL) 3 SS 13.5 $4 - 5 - 5$ 10 -16 5.0 Very Stiff Brown CLAY, trace fine to medium sand, moist (CL) 3 SS 18.5 $5 - 9 - 10$ 19 23.6 -18 Very Stiff Brown Slity CLAY, trace fine to medium sand, moist (CL) 4 SS 18.5 $5 - 9 - 10$ 19 23.6 -20 -21 5.0 -41 -52 5.0 $10 - 50/5^{\circ} - 50 + 13.6$ -22 -23 -41 -50 $50 + 13.6$ $50 + 13.6$ $50 + 13.6$ -24 -27 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 <td></td> <td>- 7</td> <td></td>		- 7															
-9 Medium Stiff Brown CLAY, little silt, trace sand, moist (CL) 2 SS 8.5 $3 - 3 - 4$ 7 26.0 -11 5.0 Stiff Brown CLAY, little silt, little sand, moist (CL) 3 SS 13.5 $4 - 5 - 5$ 10 -14 Stiff Brown CLAY, little silt, little sand, moist (CL) 3 SS 13.5 $4 - 5 - 5$ 10 -16 5.0 Very Stiff Brown CLAY, trace fine to medium sand, moist (CL) SS 18.5 $5 - 9 - 10$ 19 23.6 -17 -16 5.0 Hard Brown Silty CLAY, trace fine to medium sand, moist (CL) 4 SS 18.5 $5 - 9 - 10$ 19 23.6 -20 -21 5.0 Hard Brown Silty CLAY, trace sand, trace gravel, moist 5 SS 23.5 $10 - 50/5^{"} - 50 + 13.6$ -24 -25 5.6 5.6 -10 $50 + 13.6$ $-10 - 50/5^{"} - 50 + 13.6$		- ·															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-			Medium	Stiff Brown CL	AY, little silt,	trace sand, mo	ist (CL)	2	∇	SS	8.5	3 - 3 - 4	7	26.0	
11 5.0 12 13 13 Stiff Brown CLAY, little silt, little sand, moist (CL) 14 Stiff Brown CLAY, little silt, little sand, moist (CL) 15 15 16 5.0 17 Very Stiff Brown CLAY, trace fine to medium sand, moist 18 Very Stiff Brown CLAY, trace fine to medium sand, moist 19 Very Stiff Brown CLAY, trace fine to medium sand, moist 20 Very Stiff Brown Silty CLAY, trace sand, trace gravel, moist 21 5.0 Hard Brown Silty CLAY, trace sand, trace gravel, moist 5 22 SS 23 SS 24 SS 25 5.6		-							、 <i>,</i>		Å		10				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	50														
13 14 15 15 15 15 $4-5-5$ 10 16 5.0 15 $4-5-5$ 10 15 15 $4-5-5$ 10 17 16 5.0 15 15 $4-5-5$ 10 19 17 18 15 10 19 23.6 20 20 CH CH 19 23.6 10 19 23.6 21 5.0 CH 10 19 23.6 $10 - 50/5" - 5 - 9 - 10$ 19 23.6 22 23 $10 - 50/5" - 50 + 13.6$ $10 - 50/5" - 50 + 13.6$ $10 - 50/5" - 50 + 13.6$ $10 - 50/5" - 50 + 13.6$ 22 23 5.6 $10 - 50/5" - 50 + 13.6$ $10 - 50/5" - 50 + 13.6$ $10 - 50/5" - 50 + 13.6$ 22 23 5.6 $10 - 50/5" - 50 + 13.6$ $10 - 50/5" - 50 + 13.6$ $10 - 50/5" - 50 + 13.6$ $10 - 50/5" - 50 + 13.6$ $10 - 50/5" - 50 + 13.6$		-	0.0														
-14 Stiff Brown CLAY, little silt, little sand, moist (CL) 3 SS 13.5 4 - 5 - 5 10 -15 -16 5.0 Very Stiff Brown CLAY, trace fine to medium sand, moist (CL) 3 SS 13.5 4 - 5 - 5 10 -17 -18 Very Stiff Brown CLAY, trace fine to medium sand, moist (CH) 4 SS 18.5 5 - 9 - 10 19 23.6 -20 -21 5.0 Hard Brown Silty CLAY, trace sand, trace gravel, moist (CL) 5 SS 23.5 10 - 50/5" - 50+ 13.6 -22 -23 -24 Hard Brown Silty CLAY, trace sand, trace gravel, moist (CL) 5 SS 23.5 10 - 50/5" - 50+ 13.6 -25 -26 5.6 -27 50 5 10 - 50/5" - 50+ 13.6		-															
-15 5.0 -17 -18 -19 -20 -21 5.0 -22 -23 -23 -24 -24 -25 -25 -26 -26 5.6		-			Stiff Brov	vn CLAY, little	silt, little sand	d, moist (CL)		3		SS		4 - 5 - 5	10		
$\begin{array}{ c c c c c c c c } \hline & 5.0 \\ \hline & 17 \\ \hline & 18 \\ \hline & 19 \\ \hline & 20 \\ \hline & 21 \\ -22 \\ -23 \\ \hline & -22 \\ -23 \\ -24 \\ -24 \\ -26 \\ -26 \\ -27 \\ -2$		-									Å		15				
$\begin{array}{ c c c c c c } \hline 17 & & & & & & & & & & & & & & & & & & $		-	5.0														
-19 Very Stiff Brown CLAY, trace fine to medium sand, moist 4 SS 18.5 5 - 9 - 10 19 23.6 -20 -21 5.0 -21 5.0 -21 5.0 -21 5.0 -21 5.0 -22 -23 -23 -24 -24 -24 -25 -25 5.6 -26 5.6 5		-															
19 10 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-															
$\begin{bmatrix} -20 \\ -21 \\ -22 \\ -23 \\ -24 \\ -25 \\ -26 \\ -26 \\ -27 \\ -26 \\ -27 \\ -2$		-				Brown CLAY	trace fine to	medium sand,	moist	4	∇	SS		5 - 9 - 10	19	23.6	
$\begin{bmatrix} -22 \\ -23 \\ -24 \\ -25 \\ -26 \\ -27 \\ -27 \\ -27 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -2$		- 20			(CH)						Δ		20				
-23 -24 Hard Brown Silty CLAY, trace sand, trace gravel, moist 5 SS 23.5 10 - 50/5" - 50+ 13.6 -25 -26 5.6 5.6 5.6 5.6 5.6 5.6 5.6		- 21	5.0														
Hard Brown Silty CLAY, trace sand, trace gravel, moist -25 -26 -27 -27		- 22															
24 -25 -26 -27 -27		23															
		24				wn Silty CLAY	, trace sand,	trace gravel, m	oist	5	V	SS		10 - 50/5" -	50+	13.6	
		25			(UL)						μ						
			56														
6 X SS 28.5 39 - 50/1" - 50+		27	0.0														
6 X SS 28.5 39 - 50/1" - 50+ -30	50																
	4/10/	29	0.1		Grav LIM	ESTONE				6	X	SS		39 - 50/1" -	50+		
	GDT	30				LOTONE			/								
	ATE	31															
	EMPL	32															
	T T T	33															
	L L L L L L L L L L L L L L L L L L L	34 															
* Pocket Penetrometer Reading - Unconfined Compressive Strength, Tons/Sq.Ft.	ĕ ₽ * P	ocket	Pene	trome	eter Read	ing - Uncon	fined Com	pressive St	enath. T	ons/S	Sa.F	t.			I	I	
Ground Water Observations: BORING METHOD SAMPLE TYPE	Gro					5 21.001			-					SAMP	LE TYP	<u>'E</u>	
DATE TIME CASING DEPTH CAVE-IN BAILED WATER LEVEL HSA - Hollow Stem Augers SS - Split Spoon		TE	TIME	E CA	SING DEPTH	CAVE-IN	BAILED			ollow S	Stem	Auge	S	SS - Spl	t Spoor	ı	
0 7/11/2019 20:35 29.1 None ✓ CFA - Continuous Flight Augers ST - Shelby Tube 7/11/2019 20:50 27.3 None ✓ DC - Driving Casings ST - Shelby Tube	ã <u>7/11</u> ₩ 7/11				29.1	27.3			DC - Dri	ving C	asing		vugers				.
Image: Constraint of the second s	ال	·							MD - Mu	ıd Drill	ings						
Provide the second s	Ren	narks: _.												_ CU - Cut	tings		
Č CT - Continuous Tube	0g													– CT - Cor	ntinuous	s Tube	

												LC	G C)F T	ES1	⁻ BC	DRIN	١G
	Ų)) 7	NT									BOF	RING N	10.: <u>F</u>	RB19-0	<u>)9 (</u> Sł	neet 1	/1)
					Red Bud				DATE STA	RTED:	<u>7-9-1</u>	9			IPLETE		-19	
			: Brentv 1: St. Lo						TEMPERA NORTH:						T:			
									ELEVATIO	N:				LINE	:			
┝					<u>4</u> F	RIG TYPE: <u>CI</u>	/IE 45		CORE SIZ	E:					MER: <u>4</u> WS			
	LEV. EET)	EET)	LAYER THICK- NESS	APHI OG		SAMPL	E DESCRI	IPTION				MPLE			ER	SPT	M/C	
	шѤ	E N F	Z≒z	GR						NO.		YPE REC SS	DEPTH (FEET)		HES	N	(%)	PP*
		- 1			Medium	Stiff Gray CLA	Y, few sand,	moist (CL)			X	55	0 1.5	2 - 3	3 - 4	7		
		2																
		3	5.0															
										2	$\overline{\mathbf{A}}$	SS	3.5 5	3 - 3	3 - 4	7		
		5			Stiff Brov	vn CLAY, trac	e sand, moist	(CL)		-	р							
		6				,		~ /										
		7 																
		8								3		SS	8.5	3_4	5 - 7	12		
		9 									X	00	10	0-0	J - 1	12		
		11 12	13.5															
		-12																
		14								4	∇	SS	13.5	5 - 6	6 - 7	13		
		15									Å		15					
										$\overline{\Delta}$								
		- 17																
		- 18																
		19			LIMESTO	ONE				5		SS RC	18.5 18.9	50/5	" -			
		20											19 29					
		21											25					
		22 																
		23 	10.5															
		24 	10.5															
		25 																
		26 27																
		28																
/10/2(29									Ш							
DT 4					Boring Te	erminated at 2	9.0 feet											
ATE.G		- 31																
MPL		- 																
E F																		
PJ 7		34																
BORING LOG REPORT D142-MO.GPJ 7NT TEMPLATE.GDT 4/10/20	* P	L ocket	Pene	trome	eter Read	ing - Uncor	fined Com	pressive	Strength	 Tons/	'Sa F	t.						
D142-					rvations:	ing eneer				RING M					SAMP	LE TYP	<u>E</u>	
PRT P	DA	TE	TIME		SING DEPTH	CAVE-IN	BAILED	WATER LE		Hollow Contin					SS - Spl	it Spoor	ı	
REP	7/10	/2019						16	DC -	Driving (Casing		NUYEIS		ST - She CA - Coi			
310									<u>▼</u> MD -	Mud Dri	llings				RC - Ro	ck Core	, Augel	
DRING	Rem	narks:													CU - Cut CT - Cor		Tubo	
мГ																anuous		

											LO	G C	OF TES	ΓВС	DRI	١G
·)) 7	NT									BOF		NO.: <u>RB19-</u>	<u>11 (</u> SI	heet 1	/1)
				De d Du d								0	COMPLETE	D: <u>10-1</u>	8-19	
		-		Red Bud				EMPERATU					EAST:			
PR	OJECT	NO: <u>D</u>	142-M	D C	RILLER/INSF	-	E	ELEVATION:					LINE:			
	RING M			<u>4</u> F	RIG TYPE: <u>CN</u>	/IE 55	(ORE SIZE:					HAMMER:	Auto	<u> </u>	
LEV.	DEPTH SCALE (FEET)	LAYER THICK- NESS	GRAPHIC LOG		SAMPL	E DESCRI	PTION				/PLE		BLOWS PER	SPT N	M/C (%)	RQD PP*
шш	<u> </u>		R R L		- (NO.		YPE REC	DEPTH (FEET)	6 INCHES		(%)	FF
		0.4 0.5	P. 6.4	ASPHAL												
	-	0.9		AGGREC	GATE (11")											
	2 	1.7		Stiff Brow	/n CLAY, few	sand, few grav	vel, moist (C	_)	1		SS	2 3.5	4 - 8 - 4	12		
	4	1.5		Medium S (CL)	Stiff Brown CL	AY, few grave	el, trace sand	, moist	2		SS	3.5 5	2 - 3 - 4	7		
	5			Stiff Brow	n CLAY, trace	e sand, trace o	gravel, moist	(CL)		Д						
	6 															
	7 -	5.0														
	8								3		SS	8.5	4 - 6 - 9	15		
	9									Х		10				
				Hard Bro	wn CLAY, trac	ce sand, trace	gravel, mois	t (CL)								
	- 12															
	- 13	5.0														
	- 14								4	V	SS	13.5 15	9 - 15 - 22	37		
	- 15			Verv Stiff	Brown CLAY	, trace sand, t	race gravel	noist		Δ						
				(CL)	2.0	,, .										
	17	5.0														
	18	0.0							5		SS	18.5	6 - 8 - 12	20		
	19 								5	X	33	20	0-0-12	20		
	20 			Boring Te	erminated at 2	0.0 feet										
	21 															
	-22															
	23															
1/10/20	24 25															
GDT 4	26															
LATE	- 27															
TEMP																
TNT I	- 29															
BORING LOG REPORT D142-M0.GPJ 7NT TEMPLATE.GDT 4/10/20 		Deret		ton Dr "				tuo u -: 41	0.5 - 10							
4 ¹ ¹⁴⁵				eter Read	ing - Uncor	fined Com	pressive S	trength, I BORIN		· ·			SAME	LE TYP	۶F	
	ATE			SING DEPTH	CAVE-IN	BAILED	WATER LEVE	L HSA - H	ollow	Stem	Auger		SS - Sp			
10/1 2 10/1	8/2019 8/2019			18.5	14.2			Z CFA - C ▼ DC - Dri	ving C	asing		Augers	ST - Sh CA - Co	elby Tub	e	.
								🚺 MD - Mu					RC - Rc	ck Core		
X Rer	marks:												– CU - Cu – CT - Co		s Tube	
<u>ش</u>																

											LO	GC	OF TES	T BC	DRI	١G
)) 7	NT											IO.: <u>RB19-</u>			
	IENT: <u>F</u>							ATE STAR					COMPLETE	D: <u>6-28</u>	-19	
	OJECT CATION			Red Bud				EMPERATU ORTH:					EAST:			
PR	OJECT	NO: <u>D</u>	142-M	0 [DRILLER/INSF	-	E	LEVATION:					LINE:			
BO			D: <u>HS</u>	A F	RIG TYPE: <u>CI</u>	VIE 45	C	ORE SIZE:					HAMMER:	Auto	1	
N.	DEPTH SCALE (FEET)	SS SS SS SS SS	BHG		SAMDI	E DESCR				SAN	//PLE	-	BLOWS PER	SPT		RQD
		A F B	GRAPHI LOG						NO.	T R	YPE EC	DEPTH (FEET)	6 INCHES	N	(%)	PP*
	F .	0.5		TOPSOI	L (6") Stiff Brown CL	AV four cond	h maiat (CL)		1	M	SS	0	2 - 3 - 4	7		
	1 			Medium			, moist (CL)			μ						
	2 	3.0														
	3										~~			10	00.4	
	4			Stiff Gray	y CLAY, little s	sand, moist (C	CL)		2	χ	SS	3.5 5	3 - 4 - 6	10	22.4	
	5									Δ						
	6	5.0														
	7															
	8															
	-			Medium	Stiff Tan CLA	Y few sand n	noist (CL)		3		SS	8.5	2 - 4 - 5	9	27.7	
	—9 —					.,				X		10				
	10 															
	11	5.0														
	12															
				Very Stiff	f Tan CLAY, n	noist (CL)			4	∇	SS	13.5 15	5 - 10 - 15	25		
	- 15	3.0								\square		15				
	-	0.0														
	—16 —			Hard Tar	n and Brown C	AY moist (5		SS	16.5	10 - 18 - 26	44		
	17 	1.5								X		18				
				Boring Te	erminated at 1	8.0 feet										
	19															
	20															
	21															
	22															
	- 24															
/10/2(25															
DT 4	-															
TE.G	26 															
MPL	27 															
	28															
	29															
BORING LOG REPORT D142-M0.GPJ 7NT TEMPLATE.GDT 4/10/20 2 2 2 3 4 2 2 3 4		Pena	trom	ator Dood	ling - Uncor	fined Com	nreesive S	tranath T	one/C		+					
-142-				rvations:			ihiessive O	<u>BORI</u>		· ·			SAME	PLE TYF	۶E	
	ATE			SING DEPTH	CAVE-IN	BAILED	WATER LEVE	L HSA - H	ollow S	Stem	Auger		SS - Sp			
REPC												ugers	ST - Sh	elby Tub	e	
							7				-		CA - Co RC - Ro			
Rer	marks:												– CU - Cu	ittings		
													– CT - Co	ntinuous	s Tube	

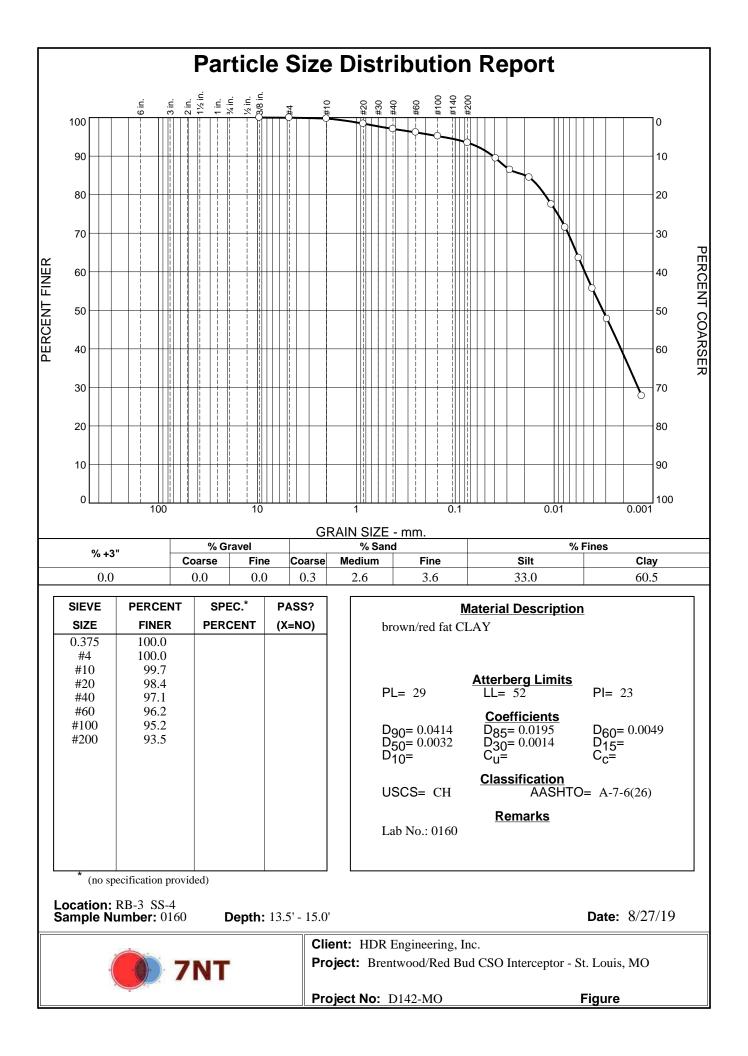
		NT									BOF)F TES 10.: <u>RB19</u>	<u>-14 (</u> S	heet 1	
			wood 8	Red Bud				DATE STAR				Suppy	COMPLET 83 Degrees	ED: <u>7-17</u>	'-19	
	CATION							NORTH:					EAST:			
	ROJECT				ORILLER/INSF			ELEVATION					LINE:			
				A F	RIG TYPE: <u>CN</u>	/IE 45		CORE SIZE:					HAMMER:	Auto	1	
≥́E	DEPTH SCALE (FEET)	ЩŸS	SHIC							SAN	/IPLE	Ξ	BLOWS PER	SPT	M/C	RQD
		E E E	GRAPHIC LOG		SAMEL	E DESCRI	FIION		NO.		/PE	DEPTH	6 INCHES	, N	(%)	PP*
	<u> </u>	0.5		ASPHAL	T (6")						EC	(FEET)	•	·		
	-1	0.5	A 4 4	CONCRE	ETE (6") vn CLAY, som	a ailt traca ar	and maint (C	<u>, , , , , , , , , , , , , , , , , , , </u>								
	-2			Suii Diov	WI CLAT, SOIN		anu, moist (C	·L)								
	3															
									1		SS	3.5	5 - 7 - 6	13	22.2	
		7.5								Ň		5				
	5															
	6															
	7															
	8															
	9			Medium	Stiff Brown an	d Gray CLAY,	, some silt, tr	ace	2		SS	8.5	3 - 4 - 5	9		
	-			sand, m	oist (CL)					Ň		10				
	10 															
	11 -															
	12	8.0														
	-13	0.0														
									3	∇	SS	13.5 15	3 - 4 - 5	9		
										\wedge		15				
	-															
	16 			Stiff Croy	y CLAY, little s	ilt little cond	traco graval	moiot	4		SS	16.5	4 - 6 - 9	15	28.7	
	17	1.5		(CH)	y CLAT, IIIIe S	ant, inthe Sand,	liace graver,	, moist	-	X	00	18	- 0 0		20.7	
				Boring To	erminated at 1	8.0 feet										
	19			-												
	20															
	21															
	-															
	-22															
	-23															
/50	24															
4/10	25															
GDT	26															
ATE	27															
EMPI	-															
	28 															
L L L L	29 															
V. V	- Pocket	Pene	trome	eter Read	ing - Uncor	fined Com	pressive S	Strength T	ons/s	l Sa Fi	ŀ				<u> </u>	L
Gr				rvations:			p1000100 C		NG ME	· ·			SAM	PLE TYF	ΡĒ	
	DATE	TIME	E CA	SING DEPTH	CAVE-IN	BAILED	WATER LEV	EL HSA - H	lollow \$	Stem	Auge	rs		olit Spoor		
7/1	17/2019 17/2019	9:47 9:59	,	16.5	13.3		None	☑ CFA - C ☑ DC - Dri				Augers	ST - SI	nelby Tub	be	
BORING LOG REPORT D142-M0.GPJ 7NT TEMPLATE.GDT 4/10/20	1/12019	9.55	,		13.3			MD - Mu						ontinuou		-
	emarks:												_ RC-R _ CU-C	ock Core uttinas		
BOR														ontinuous	s Tube	

											LO	GC	F TES	Т ВС	DRI	١G
C) 7	NT											IO.: <u>RB19-</u>			
								ATE STAR					COMPLETE	D: <u>6-28</u>	8-19	
				& Red Bud				EMPERATU					EAST:			
PR	OJECT	NO: <u>D</u>	142-M	0 [DRILLER/INSP		E	LEVATION					LINE:			
	RING M		0	A F	RIG TYPE: <u>CN</u>	/IE 45	C	ORE SIZE:					HAMMER:	Auto	1	
EZ.	DEPTH SCALE (FEET)	SS - CK	GRAPHIC		SAMPL	E DESCRI	IPTION				MPLE	=	BLOWS PER	SPT		RQD
ШË	E SE	ZĘź			•				NO.	F	YPE REC SS	DEPTH (FEET)	6 INCHES		(%)	PP*
	-	0.5		TOPSOII	_ (6") vn CLAY, moi:	at (CL)			1	M	SS	0	2 - 2 - 3	5		
	-1			Solt Diov						Д						
	2 	3.0														
	—3 —			Madium		AV trace fine		e el	2		SS	3.5	2 - 3 - 4	7	24.0	
	4			moist (Cl	Stiff Brown CL H)	AY, trace fine	e to coarse sa	na,	2	X	33	5	2 - 3 - 4	1	24.0	
	5															
	6															
	7															
	- 9	10.0							3	V	SS	8.5	2 - 4 - 5	9	24.7	
										\land		10				
	- 11															
	-															
	12 															
	—13 —			Hord Cra	y and Tan Silt	W CLAX main	$\frac{1}{2}$		4		SS	13.5	49 - 25 - 15	40		
	—14 —			Hard Gra	iy and Tan Sili	y CLAY, mole	st (CL)		-	X	00	15	49-20-10	40		
	15	3.5							_	Ц_	~~	45.5	0 44 0			
	16								5	M	SS	15.5 17	8 - 11 - 9	20		
	17		<i>[]]]]</i>	Borina Te	erminated at 1	7.0 feet				Д						
	- 18															
	- 19															
	- 20															
	- 21															
	- 22															
	-															
	23 															
10/20	24 															
T 4/	25 															
E E	—26 —															
MPLA	27															
	28															
	29															
BORING LOG REPORT D142-M0.GPJ 7NT TEMPLATE.GDT 4/10/20 BORING LOG REPORT D142-M0.GPJ 7NT TEMPLATE.GDT 4/10/20		Dens	tre	tor Deed		finad Carr		tropath T	one"		4					
Ч [–] Р				eter Read ervations:	ing - Uncor	innea Com	ipressive S	trength, I		· ·			SOM	PLE TYP	PE	
				SING DEPTH	CAVE-IN	BAILED	WATER LEVE	HSA - H	lollow	Stem	Auger	s		lit Spoor		
C C C C C C C C C C C C C C C C C C C							7	Z CFA - C				ugers	ST - Sh	elby Tub	be	
								MD - Mu						ontinuous ock Core		
Rer	marks:												_ CU - Cι	ıttings		
														ntinuous	s Tube	

	IENT: H							TE STAR		7-17-1	BOR 9	RING N	OF TEST IO.: <u>RB19-</u> COMPLETE	<u>16 (</u> SI	neet 1	
				Red Bud									90 Degrees			
					RILLER/INSF	P. CC/CPIII	NC 	orth: Evation:					EAST: LINE:			
	RING				RIG TYPE: CN		CC	RE SIZE:					HAMMER: A			
	DEPTH SCALE (FEET)		0			E DESCRI				SAN			BLOWS PER	SPT N	M/C (%)	RQD PP*
			дд_ СВ_						NO.	R	'PE EC	DEPTH (FEET)	6 INCHES		(70)	11
	1 2 3 4 5 6 7 8 9	0.4 0.3 7.8		Medium sand, mo	GATE BASE (4 Stiff Brown an ist (CL)	d Gray CLAY,	, some silt, trac		1	X	SS	3.5 5 8.5	3 - 3 - 5 2 - 3 - 3	8	25.6	
	- - - - - - - - - - - - - - - - - - -	5.0		(CL)			and, moist (CL)		3		SS	10	3 - 4 - 6	10		
D142-MO.GPJ 7NT TEMPLATE.GDT 4/10/20		1.5			erminated at 1							15				
D 7/1 7/1 7/1			Obse CA	eter Read	CAVE-IN 12.8	BAILED	Pressive Str WATER LEVEL None ⊻ None ▼		NG ME Iollow S ontinue ving C	THOI Stem A ous Fl asing:	<u>)</u> Auger light A		SAMP SS - Spl ST - She CA - Cor RC - Ro - CU - Cu - CT - Cor	elby Tub ntinuous ck Core ttings	n be s Auger	

Ó) 7	NT									BOF	RING)F TES NO.: <u>RB19-</u>			
				Ded Dud				DATE STAP					COMPLETE	D: <u>7-17</u>	-19	
				Red Bud				NORTH:					90 Degrees EAST:			
	OJECT				RILLER/INSF	: CC/CPIII		ELEVATION	۷:				LINE:			
	RING M		D: <u>HS</u>		IG TYPE: <u>CN</u>	/IE 45		CORE SIZE					HAMMER: A	Auto		
ELEV. (FEET)	DEPTH SCALE (FEET)	LAYER THICK- NESS	GRAPHIC LOG		SAMPL	E DESCRI	IPTION				MPLE	DEPTH	BLOWS PER	SPT N	M/C (%)	RQD PP*
		0.5	ū		F (6")				NO.		REC	(FEET)	6 INCHES		(,	
	- 1 2	0.5		ASPHAL CONCRE Stiff Brow		e silt, trace sa	and, moist (0	CL)								
	- 	7.5							1	X	SS	3.5 5	4 - 5 - 5	10		
		5.0		Medium S gravel, m	Stiff Brown CL bist (CH)	AY, some silt	t, little sand,	trace	2	X	SS	8.5 10	3 - 4 - 5	9		
		0.6		_∖moist (CL	vn CLAY, son) rminated at 1		e silt, trace g	ravel,/	3	X	SS	13.5 14.1	8 - 50/1" -	50+		
Gro	- -26 -27 -28 -29 -29 - -29 -		Obse	eter Readi rvations: SING DEPTH 13.5	ng - Uncon CAVE-IN	fined Com BAILED	WATER LEV	BOR	Tons/S ING ME Hollow S Continu	<u>ETHO</u> Stem	<u>D</u> Auge	rs Augers	SS - Spl		า	
7/17 Rer	narks:	11:39		10.0				👿 DC-D	riving C lud Drill	asing			ST - She CA - Col RC - Ro - CU - Cu - CT - Col	ntinuous ck Core ttings	s Auger	-

	ENT: <u>H</u>		wood	- Dod Dud				ATE STAR		B(7-17-19	DRING	DF TEST NO.: <u>RB19-</u> COMPLETE	<u>18 (</u> SI	heet 1	
				Red Bud				IORTH:				90 Degrees EAST:			
					DRILLER/INSF	-	E	ELEVATION	:			LINE:			
	RING M			<u> </u>	RIG TYPE: <u>CN</u>	1E 45	(CORE SIZE:	1			HAMMER: <u>A</u> BLOWS			
ELEV.	DEPTH SCALE (FEET)	HICK	GRAPHIC LOG		SAMPL	E DESCRI	IPTION			SAMP		PER	SPT N	M/C (%)	RQD PP*
		0.2	Ū	ASPHAL	T (2")				NO.	REC	(FEET)			(/0)	
	- - - - - - - - - - - 4	0.6			ETE (7") Stiff Brown and	d Gray CLAY,	, some silt, tra	/	1	v∎ s	6 3.5 5	3 - 4 - 4	8		
	5 6 7 8	12.8									5				
	- 								2	s s	6 8.5 10	3 - 3 - 4	7		
	- 	1.5		sand, mo	Stiff Gray and bist (CL) erminated at 1		, some silt, tra	ace	3	s s	5 13.5 15	2 - 4 - 5	9	31.7	
D142-M0.GPJ 7NT TEMPLATE.GDT 4/10/20 DD + D	- 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27														
CGPJ 7NT TEN	28 29 														
42-₩C					ing - Uncon	fined Com	pressive S								
ਸ਼ੂ Gro				rvations:	001/5 11					<u>THOD</u> Stem Au	ners		LE TYF		
7/17 7/17 7/17	ATE 7/2019 7/2019 marks:	TIME 14:3 14:49	1	SING DEPTH 13.5	CAVE-IN 13.1	BAILED	None		Continue	ous Fligł asings	t Augers	SS - Spl ST - She CA - Co RC - Ro	elby Tub ntinuous ck Core	oe s Auger	
												CU - Cu CT - Coi		s Tube	


Ċ	-	NIT									LC)G C)F TE	EST	Г ВС	DRI	١G
		NT										RING N	10.: <u>RI</u>		•		/1)
	IENT: <u>F</u> OJECT		wood	& Red Bud				DATE STA TEMPERA				Sunny,	80 Degree	es	D: <u>7-2-</u>		
					RILLER/INS			NORTH: _ ELEVATIO	NI				EAST: LINE:				
	RING				RIG TYPE: <u>CI</u>			CORE SIZ					HAMM		Auto		
LEV. EET)	DEPTH SCALE (FEET)	AYER HICK- IESS	APHIC -0G		SAMPL	E DESCR	IPTION				MPLE		BLOV PE	R	SPT	M/C (%)	RQD PP*
ШЩ		J≓z	B B B C R			AY, little san		<u></u>	NC).	TYPE REC SS	DEPTH (FEET) 0	6 INCH		N 8	(%)	FF
	$\begin{bmatrix} -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ -14 \\ -15 \\ -16 \\ -17 \\ -18 \\ -19 \\ -20 \\ -21 \\ -22 \\ -23 \\ -24 \end{bmatrix}$	3.4		Hard Gra		sand, few silt,			2 3 4 ⊻ 5		SS SS SS	1.5 3.5 5 8.5 10 13.5 15.5 16.4	5 - 4 - 2 - 4 - 46 - 14 44 - 50	- 5	7 9 29 50+	28.0	
Gro			Obse	eter Read ervations:	ing - Uncoi Cave-in	BAILED	WATER LEV	<u>BOF</u> /EL HSA - ▽ CFA -	RING N Hollov Contir Driving	METHO w Sten nuous Casin	<u>DD</u> n Auge Flight <i>I</i> gs		SS ST CA	S - Spli ⊺ - She A - Cor	it Spoor elby Tub ntinuous	n be s Auger	
D. 7/2	ATE			ASING DEPTH		BAILED	16	/EL HSA - ↓ CFA - ↓ DC - I ↓ MD - I	Hollov Contir Driving Mud D	א רו ril	Sten uous Casin Ilings	Stem Auge uous Flight A Casings Ilings	Stem Augers uous Flight Augers Casings Ilings	Stem Augers SS Jous Flight Augers ST Casings CA Ilings RC	Stem Augers uous Flight Augers Casings llings RC - Roo CU - Cut	Stem Augers SS - Split Spoor Jous Flight Augers ST - Shelby Tub Casings CA - Continuous Ilings RC - Rock Core CU - Cuttings	Stem Augers Jous Flight Augers Casings Ilings RC - Rock Core

Ó		NT									BOR	RING N)F TEST 10.: <u>RB20-</u> 7	<u>1_(</u> She	eet 1/ ⁻	
	ENT: H		wood	Red Bud				DATE STAR					COMPLETE 60 Degrees	D: <u>3-25</u>	-20	
								NORTH:					EAST:			
	OJECT				ILLER/INSP	: DS/DS		ELEVATIO	۷:				LINE:			
BOI	RING M	ETHO	D: <u>HS</u>	A RIC	G TYPE: <u>CM</u>	E 550 Black		CORE SIZE	:				HAMMER: A	luto		
N.C	тшС	足ふる	₽ ₽							CVI	NPLE		BLOWS	ODT		
(FEE)	DEPTH SCALE (FEET)	THICH	GRAPHIC LOG		SAMPLI	E DESCRII	PTION		NO.	Т		DEPTH	PER 6 INCHES	SPT N	(%)	RQD PP*
	_	0.2	P 6 4	ASPHALT	(2.5")			/	-							
	1	0.6 0.4	М.													
	2			AGGREGA		0.000		/								
	_			moist (CH)		CLAY, trace	sand, trac	e gravel,								
	3															
									1	∇	SS	3.5	3 - 3 - 4	7		1.5
	-									Ň		5				
	5	7.9														
	-6															
	-															
	7															
	8															
	-								2		SS	8.5	7 - 12 - 50/4"			3.0
	9	0.7			Brown CLAY,	trace sand, tr	race grave	l, moist		X		10				
		0.2	H			-		/	1		RC	9.9				42%
	-	1.2			LIMESTON	⊑ E, small shell 1	foooilo om					13				
	11 		× × > × × > × × > × × >				1055115, 5111									
	12	1.9	$ \times \times \rangle$	Gray CLAY	STONE			/								
			× × >							Ш						
	-			VOID (5')												
	14															
	- 10	5.0														
	16 															
	17															
	-		× × × × × × × × ×	Weathered	CLAYSTON	IE			3		SS	18.5	3 - 6 - 6	12		4.5+
	19	2.0	$ \times \times \rangle$							X	00	20		12		4.01
	-20		$\times \times \times$							\square						
	-			Boring Terr	minated at 20	0.0 feet										
	21															
	-22															
	-															
	23 															
50	24															
1/13/	- 25															
1	- 20															
E.GI	26															
LAT	27															
EMF	-															
E L	28															
	29															
G	-															
9 				eter Readin	g - Uncon	fined Com	pressive			•						
				rvations:					ING ME		_			LE TYP		
	ATE	TIME	E CA	SING DEPTH	CAVE-IN	BAILED	WATER LE		Hollow Continu	Stem	Auger	S	SS - Spli			
								CFA- ▼ DC-D	riving C	Casing	iigiit A IS	ayers	ST - She			
8									lud Dril		-		CA - Cor			·
	narks	Backfi	lled wit	h bentonite ch	nips & cemer	nt arout							RC - Roo			
													_ CU - Cut - CT - Cor		Tubo	
<u>м</u>														anuous		

7	NT										OF TES			
CLIENT: H							DATE STAF	RTED: 3		JRING	COMPLET			1)
PROJECT	Brent						TEMPERAT			R: <u>Sunny</u>	, 60 Degrees			
LOCATION PROJECT				RILLER/INSF			NORTH:							
BORING N					/IE 550 Black		CORE SIZE				HAMMER	Auto		
>Ê EUÊ	ЩŽ v	UHC DHC							SAMF	LE	BLOWS	SPT	M/C	RQD
ELEV. (FEET) DEPTH SCALE (FEET)	LAN	GRAPHIC LOG		SAMPL	E DESCRI	PHON		NO.	TYPI REC	DEPTH (FEET		N	(%)	PP*
-	0.2 0.5	P 4 4	ASPHAL				/)			
-1					AY, trace san	nd. race ara	vel. moist							
2			(CL)		·	· · ·								
3												_		1.0
4								1	M = s	S 3.5 5	2 - 3 - 2	5		1.0
5									Д					
6														
7	13.3													
8	13.3													
9								2		S 8.5	3 - 4 - 4	8		1.0
									Δ	10				
- 12														
- 13								3		S 13.5	5 - 8 - 10	18		2.75
—14 —			Very Stiff (CH)	Brown Fat Cl	AY, trace sar	nd, trace gr	avel, moist		X	15				
	5.5													
17	0.0													
								4		S 18 19.5	5 - 5 - 8	13		3.0
—19 —			Davia a Ta		0.5.6				Д	19.5				
20			Boring I	erminated at 1	9.5 feet									
21														
22														
23														
07														
-25														
-26														
L - 29														
24 -24 -25 -26 -27 -27 -28 -27 -28 -29 -29 -29 -29 -29 -29 -29 -29	<u> </u>						0							
[≥] * Pocket				ing - Uncor	fined Com	pressive		Tons/S						
	Vater		SING DEPTH	CAVE-IN	BAILED	WATER LE	VEL HSA -	Hollow	Stem Au		SS - S	<u>IPLE TYF</u> plit Spoo		
DATE 3/25/2020 3/25/2020 90 90 90 90 90 90 90 90 90 90 90 90 90			18.0	10.0		None	CFA - 0	Continu riving C		nt Augers	ST - S	helby Tul	be	
0 0 0				10.0		140116	<u>T</u> MD - N	lud Drill	ings			ontinuou Rock Core		r
Remarks:	Backfi	lled wi	th cuttings								CU-C	Cuttings		
BO											— CT-C	ontinuou	s Tube	

CLIE) 7 Ent: H	NT DR			DATE STAF	RTED: 3		BOF		NF TES	<u>3 (</u> Sh	eet 1/	
				Red Bud						60 Degrees			
			ouis, M		NORTH:					EAST:			
			142-M0		ELEVATION								
BOF	RING M	ETHO	D: <u>HS</u>	A RIG TYPE: <u>CME 550 Black</u>	CORE SIZE	:;				HAMMER: A	Auto		
νF	ΞΨF	ယ်နှစ	GRAPHIC LOG				SAN	NPLE	-	BLOWS	SPT	M/C	PC
	DEPTH SCALE (FEET)	LAYER THICK- NESS	LOG AP	SAMPLE DESCRIPTI	ON			YPE		PER	N	(%)	PF
шĘ	005	∠⊢∠	В			NO.		REC	DEPTH (FEET)	6 INCHES		(/0)	
		0.6		ASPHALT (7.5")		_							
	1 2 3 4 5	4.4		Medium Stiff Brown CLAY, trace sand, m Medium Stiff Brown CLAY, trace sand, tra		1	X	SS	3.5 5	3 - 3 - 4	7		2.2
	6 7 7 8 9 10 11			(CL)		2	X	SS	8.5 10	2 - 3 - 4	7		2
		14.0				3	X	SS	13.5 15	3 - 3 - 3	6		1
				Stiff Brown CLAY, trace sand, trace grave	el, moist (CL)	4	X	SS	18.5 20	3 - 4 - 7	11		1.
	22 23 24 24 25 25	6.0		Very Stiff Brown Fat CLAY, weathered Cl soil (CH)	aystone residual	5	X	SS	23.5 25	4 - 6 - 8	14		3.
	26 27 28 29 30	5.5		Son (Crr)		6	X	SS	29 30.5	7 - 10 - 16	26		3
	31 32 33 34			Boring Terminated at 30.5 feet									
* P/	ocket	Pene	trome	eter Reading - Unconfined Compres	ssive Strength	Tons/9	Sa F	t	I			1	
						RING ME				C A M D			
								_	re .		<u>LE TYF</u>		
3/25	/2020 /2020	TIME		SING DEPTH CAVE-IN BAILED WA 29.0 14.5 h cuttings	None ↓ CFA - None ↓ DC - D	Hollow S Continu Driving C Aud Drill	ous F asing	light A		SS - Spl ST - She CA - Col RC - Ro _ CU - Cu	elby Tub ntinuous ck Core	be s Auger	r
					-			-		1 22 54			

		NT						I	BOF)F TEST 10.: <u>RB20-</u> 4	<u>1 (</u> She	eet 1/	
			wood 8	Red Bud	DATE S						COMPLETE		-20	
					NORTH:						EAST:			
	DJECT				ELEVAT						LINE:			
BOR	RING M	ETHO	D: <u>HS</u> /	A RIG TYPE: CME 550 Black	CORE S						HAMMER: A	uto		
ELEV.	DEPTH SCALE (FEET)	AYER HICK- JESS	GRAPHIC LOG	SAMPLE DESCRIPTION	1			SAN			BLOWS PER	SPT N	M/C (%)	RQI PP
шш	00 E		ц С С				NO.		PE <u>EC</u> SS	DEPTH (FEET)	6 INCHES		(/0)	
	1 2 2 3 4	0.3 4.7		 TOPSOIL (4") Soft Brown CLAY, trace sand, trace gravel, n 	noist (CL)		1	X	55	0 1.5	1 - 2 - 2	4		0.5
	5 6 7 7 8 9	5.0		Medium Stiff Brown CLAY, trace sand, trace (CL)	gravel, mois	t	2	X	SS	5 6.5	4 - 4 - 4	8		1.5
				Stiff to Very Stiff Brown Fat CLAY, trace sand gravel, moist (CH)	d, trace		3	X	SS	10 11.5	4 - 5 - 6	11		2.5
	15 16 17 17 17 18 19 - 19 - 20	15.0					4	X	SS	15 16.5	4 - 5 - 7	12		3.2
	21 22 23 24 24						5	X	SS	21 21.5	6 - 8 - 11	19		3.2
	25 26 27 27 28 29 29	5.0		Cobbles in Split Spoon, little recovery			6		SS	25 26.5	50/4"			
	30 31 32 33 34 34	1.5		Weathered CLAYSTONE Boring Terminated at 31.5 feet			7	X	SS	30 31.5	15 - 17 - 20	37		4.5
* Pc	ocket	Pene	trome	eter Reading - Unconfined Compressiv	ve Strenat	h, T	ons/S	Sq.Ft					•	
				rvations:				THO			SAMP	LE TYP	Έ	
DA ⁻ 3/24/ 3/24/	TE /2020 /2020	TIME		SING DEPTH CAVE-IN BAILED WATER 30.0 No	RLEVEL HS/ one ∑ CF/ one ▼ DC	A - H A - C - Dri'	ollow s	Stem A ous Fli asings	- Auger ight A	s lugers	SS - Spli ST - She CA - Cor RC - Roo CU - Cut	t Spoor Iby Tub Itinuous k Core	n be s Augei	
											- CT - Cor		Tube	

Client: HDR Engineering, Inc. Project: Brentwood/Red Bud CSO Interceptor - St. Louis, MO Project Number: D142-MO Location: RB-3 SS-4 Depth: 13.5' - 15.0' Material Description: brown/red fat CLAY Date: 8/27/19 PL: 29 LL: 52 USCS Classification: CH AASHTO Classification

AASHTO Classification: A-7-6(26) Testing Remarks: Lab No.: 0160 Sieve Test Data Cumulative Cumulative Dry Sample Pan Sieve Weight and Tare Tare Weight Opening Retained Percent Percent Tare (grams) (grams) Size Finer Retained (grams) (grams) 0.00 0.375 0.00 100.0 0.0 356.90 15.82 #4 0.12 100.0 0.0 #10 0.87 99.7 0.3 52.30 0.00 0.00 #20 0.69 98.4 1.6 #40 1.41 97.1 2.9 #60 1.88 96.2 3.8 #100 2.39 95.2 4.8

Hydrometer Test Data

3.28

93.5

#200

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 99.7

Weight of hydrometer sample =52.30 Hygroscopic moisture correction:

Moist weight and tare = 44.40

Dry weight and tare = 43.79

Tare weight = 29.96

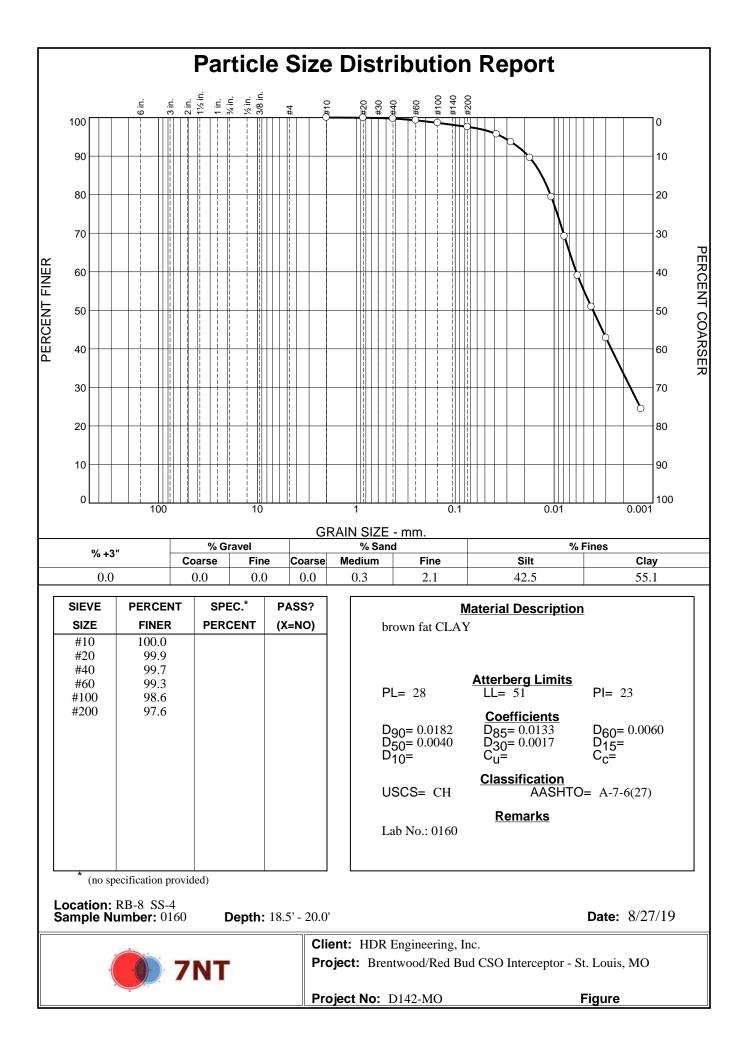
Hygroscopic moisture = 4.4%

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -5.0

Meniscus correction only = 0.0

Specific gravity of solids = 2.65Hydrometer type = 152H


Hydrometer effective depth equation: $L = 16.294964 - 0.164 \times Rm$

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	19.8	50.0	44.9	0.0137	50.0	8.1	0.0389	89.4	10.6
2.00	19.8	48.5	43.4	0.0137	48.5	8.3	0.0279	86.5	13.5
5.00	19.8	47.5	42.4	0.0137	47.5	8.5	0.0178	84.5	15.5
15.00	19.8	44.0	38.9	0.0137	44.0	9.1	0.0106	77.5	22.5
30.00	19.8	41.0	35.9	0.0137	41.0	9.6	0.0077	71.5	28.5
60.00	19.9	37.0	31.9	0.0137	37.0	10.2	0.0056	63.6	36.4
120.00	20.0	33.0	28.0	0.0136	33.0	10.9	0.0041	55.7	44.3
250.00	20.2	29.0	24.0	0.0136	29.0	11.5	0.0029	47.8	52.2
1440.00	20.1	19.0	14.0	0.0136	19.0	13.2	0.0013	27.8	72.2

8/28/2019

PI: 23

2 a h h la a		Gravel				Sand				Fines	
Cobbles	Coarse	Fine	Tota	l Coa	rse Me	dium l	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.3	3 2	.6	3.6	6.5	33.0	60.5	93.5
										_	_
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Client: HDR Engineering, Inc. Project: Brentwood/Red Bud CSO Interceptor - St. Louis, MO Project Number: D142-MO Location: RB-8 SS-4 Depth: 18.5' - 20.0' Sam Material Description: brown fat CLAY Date: 8/27/19 PL: 28 LL: 5 USCS Classification: CH AAS Testing Remarks: Lab No.: 0160

Sample Number: 0160

LL: 51 PI: 23 AASHTO Classification: A-7-6(27)

			Sieve	e Test Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
399.74	15.84	0.00	#10	0.00	100.0	0.0	
52.88	0.00	0.00	#20	0.03	99.9	0.1	
			#40	0.14	99.7	0.3	
			#60	0.38	99.3	0.7	
			#100	0.73	98.6	1.4	
			#200	1.28	97.6	2.4	

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0

Weight of hydrometer sample =52.88

Hygroscopic moisture correction:

Moist weight and tare = 57.87 Dry weight and tare = 55.65 Tare weight = 27.43

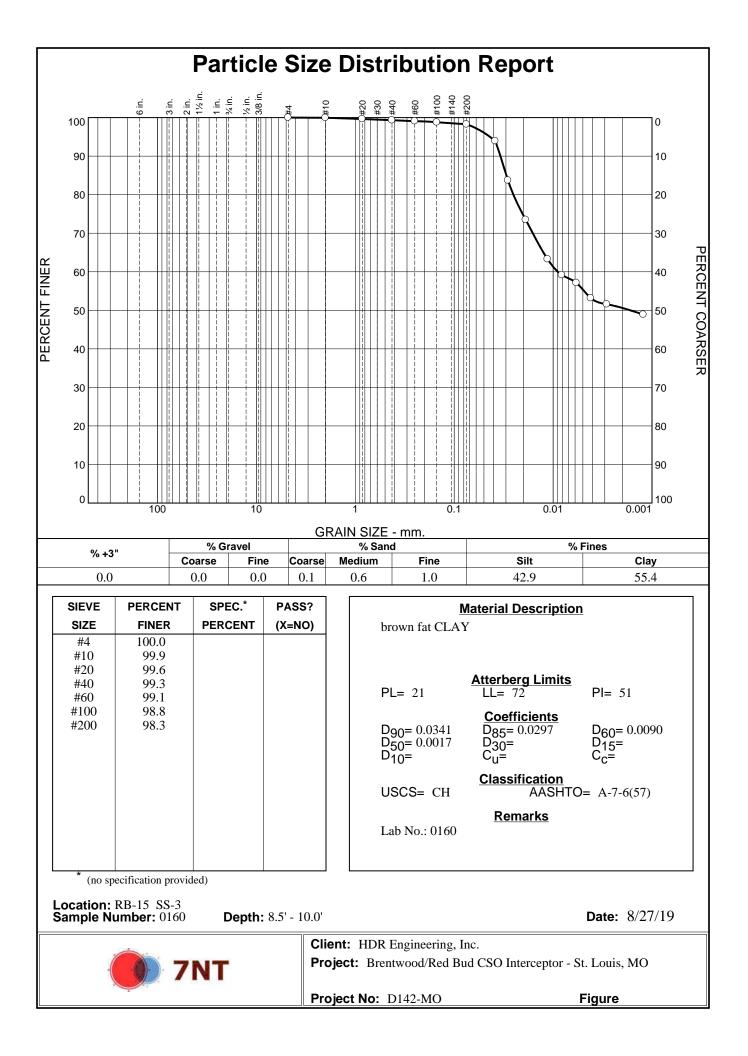
Hygroscopic moisture = 7.9%

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -5.0

Meniscus correction only = 0.0

Specific gravity of solids = 2.65


Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	19.8	52.0	46.9	0.0137	52.0	7.8	0.0381	95.7	4.3
2.00	19.8	51.0	45.9	0.0137	51.0	7.9	0.0272	93.7	6.3
5.00	19.8	49.0	43.9	0.0137	49.0	8.3	0.0176	89.6	10.4
15.00	19.8	44.0	38.9	0.0137	44.0	9.1	0.0106	79.4	20.6
30.00	19.8	39.0	33.9	0.0137	39.0	9.9	0.0079	69.2	30.8
60.00	19.9	34.0	28.9	0.0137	34.0	10.7	0.0058	59.0	41.0
120.00	20.0	30.0	25.0	0.0136	30.0	11.4	0.0042	50.9	49.1
250.00	20.2	26.0	21.0	0.0136	26.0	12.0	0.0030	42.8	57.2
1440.00	20.1	17.0	12.0	0.0136	17.0	13.5	0.0013	24.4	75.6

8/28/2019

Cabbles		Gravel				Sand				Fines	
Cobbles	Coarse	Fine	Tota	I Coa	rse Mec	lium F	ine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0 0	.3	2.1	2.4	42.5	55.1	97.6
I		<u> </u>						1		I	1
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Client: HDR Engineering, Inc. Project: Brentwood/Red Bud CSO Interceptor - St. Louis, MO Project Number: D142-MO Location: RB-15 SS-3 Depth: 8.5' - 10.0' Material Description: brown fat CLAY Date: 8/27/19 **PL:** 21 USCS Classification: CH Testing Remarks: Lab No.: 0160

Sample Number: 0160

LL: 72 **PI:** 51 **AASHTO Classification:** A-7-6(57)

			Sieve	e Test Data		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained
242.16	15.76	0.00	#4	0.00	100.0	0.0
			#10	0.14	99.9	0.1
53.39	0.00	0.00	#20	0.17	99.6	0.4
			#40	0.33	99.3	0.7
			#60	0.46	99.1	0.9
			#100	0.62	98.8	1.2
			#200	0.90	98.3	1.7

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 99.9Weight of hydrometer sample =53.39

Hygroscopic moisture correction: Moist weight and tare = 46.24

Dry weight and tare = 44.91

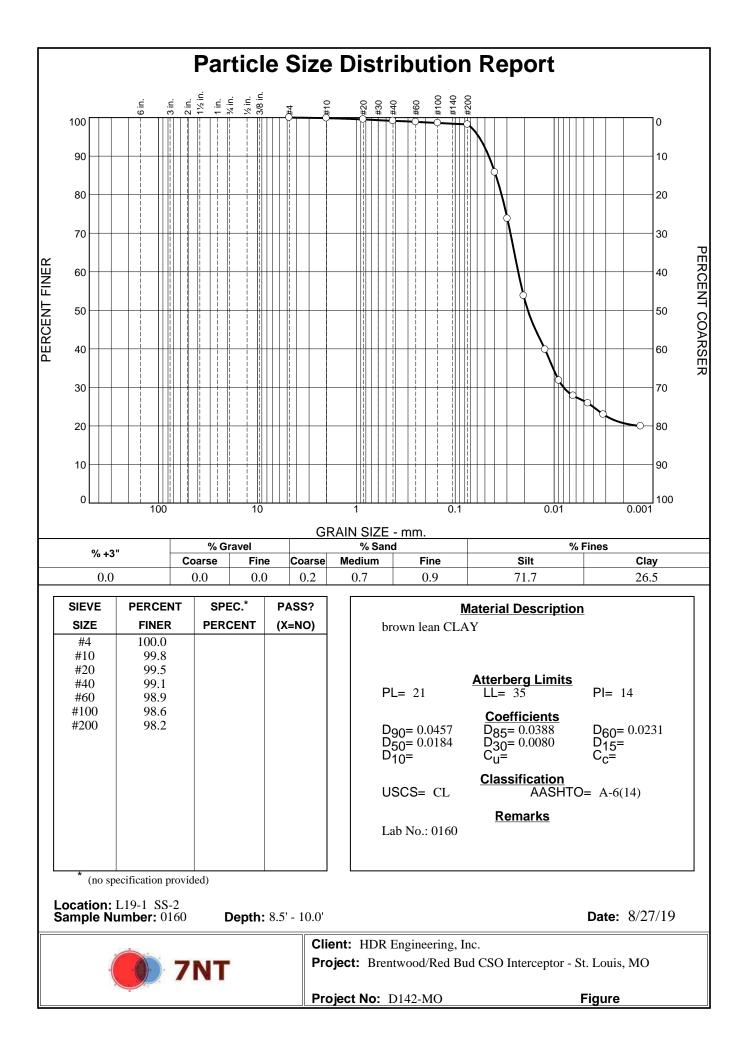
Tare weight = 30.52

Hygroscopic moisture = 9.2% Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -5.0

Meniscus correction only = 0.0

Specific gravity of solids = 2.65


Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	19.9	51.0	45.9	0.0137	51.0	7.9	0.0385	93.9	6.1
2.00	19.9	46.0	40.9	0.0137	46.0	8.8	0.0286	83.7	16.3
5.00	19.9	41.0	35.9	0.0137	41.0	9.6	0.0189	73.5	26.5
15.00	19.9	36.0	30.9	0.0137	36.0	10.4	0.0114	63.3	36.7
30.00	19.9	34.0	28.9	0.0137	34.0	10.7	0.0082	59.2	40.8
60.00	19.9	33.0	27.9	0.0137	33.0	10.9	0.0058	57.1	42.9
120.00	20.2	31.0	26.0	0.0136	31.0	11.2	0.0042	53.2	46.8
250.00	21.2	30.0	25.2	0.0134	30.0	11.4	0.0029	51.6	48.4
1440.00	19.8	29.0	23.9	0.0137	29.0	11.5	0.0012	48.9	51.1

8/28/2019

Cabbles		Gravel				Sand				Fines	
Cobbles	Coarse	Fine	Total	Coars	se Me	dium F	ine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1).6	1.0	1.7	42.9	55.4	98.3
						1					
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Client: HDR Engineering, Inc. Project: Brentwood/Red Bud CSO Interceptor - St. Louis, MO Project Number: D142-MO Location: L19-1 SS-2 **Depth:** 8.5' - 10.0' Material Description: brown lean CLAY Date: 8/27/19 **PL:** 21 **USCS Classification:** CL Testing Remarks: Lab No.: 0160

Sample Number: 0160

LL: 35 **PI:** 14 **AASHTO Classification:** A-6(14)

			Sieve	e Test Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
467.15	13.48	0.00	#4	0.00	100.0	0.0	
			#10	0.71	99.8	0.2	
51.43	0.00	0.00	#20	0.17	99.5	0.5	
			#40	0.36	99.1	0.9	
			#60	0.50	98.9	1.1	
			#100	0.64	98.6	1.4	
			#200	0.84	98.2	1.8	

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 99.8Weight of hydrometer sample =51.43

Hygroscopic moisture correction: Moist weight and tare = 62.95Dry weight and tare = 62.02

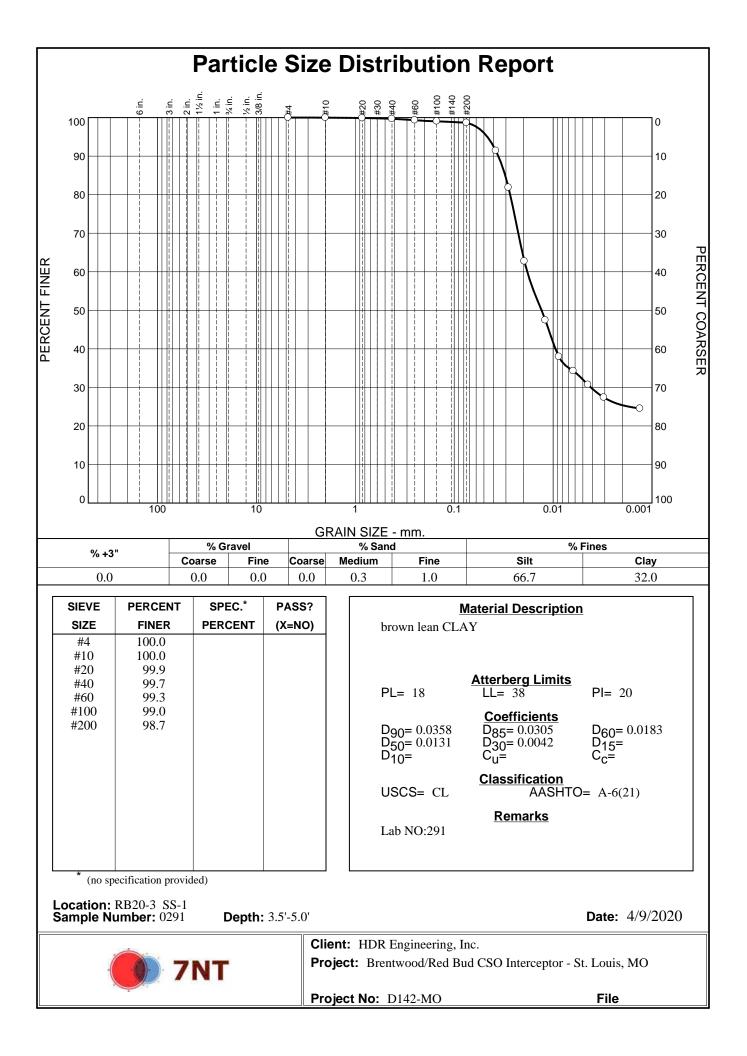
Tare weight = 30.71

Hygroscopic moisture = 3.0%

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -5.0

Meniscus correction only = 0.0Specific gravity of solids = 2.65


Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	19.8	48.0	42.9	0.0137	48.0	8.4	0.0397	85.8	14.2
2.00	19.8	42.0	36.9	0.0137	42.0	9.4	0.0297	73.8	26.2
5.00	19.8	32.0	26.9	0.0137	32.0	11.0	0.0203	53.8	46.2
15.00	19.8	25.0	19.9	0.0137	25.0	12.2	0.0123	39.8	60.2
30.00	19.8	21.0	15.9	0.0137	21.0	12.9	0.0090	31.8	68.2
60.00	19.9	19.0	13.9	0.0137	19.0	13.2	0.0064	27.9	72.1
120.00	20.0	18.0	13.0	0.0136	18.0	13.3	0.0046	25.9	74.1
250.00	20.2	16.5	11.5	0.0136	16.5	13.6	0.0032	23.0	77.0
1440.00	20.1	15.0	10.0	0.0136	15.0	13.8	0.0013	20.0	80.0

8/28/2019

Sabblaa		Gravel				Sand				Fines	
Cobbles	Coarse	Fine	Tota	I Coa	rse Mea	dium F	ine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.2	2 0	.7).9	1.8	71.7	26.5	98.2
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Client: HDR Engineering, Inc. Project: Brentwood/Red Bud CSO Interceptor - St. Louis, MO Project Number: D142-MO Location: RB20-3 SS-1 Depth: 3.5'-5.0' Material Description: brown lean CLAY Date: 4/9/2020 **PL:** 18 **USCS Classification:** CL Testing Remarks: Lab NO:291

Sample Number: 0291

LL: 38 **PI:** 20 **AASHTO Classification:** A-6(21)

			Sieve	e Test Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
319.82	13.85	0.00	#4	0.00	100.0	0.0	
			#10	0.08	100.0	0.0	
53.80	0.00	0.00	#20	0.05	99.9	0.1	
			#40	0.16	99.7	0.3	
			#60	0.35	99.3	0.7	
			#100	0.50	99.0	1.0	
			#200	0.71	98.7	1.3	

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0Weight of hydrometer sample =53.80

Hygroscopic moisture correction: Moist weight and tare = 41.28

Dry weight and tare = 40.90

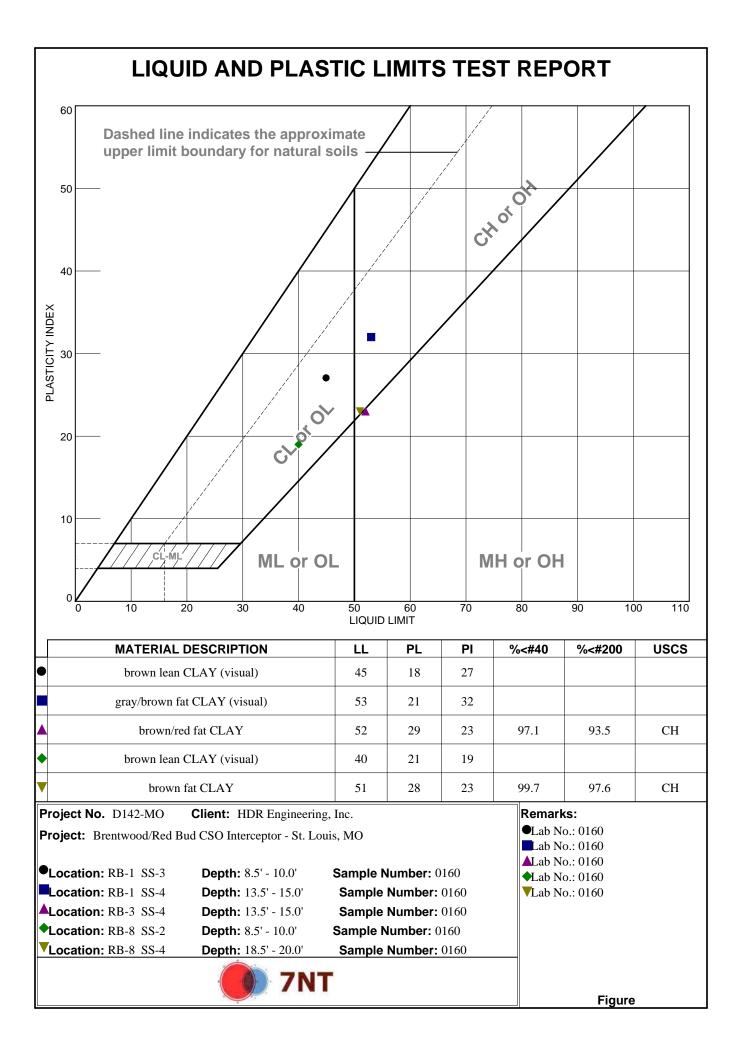
Tare weight = 27.43

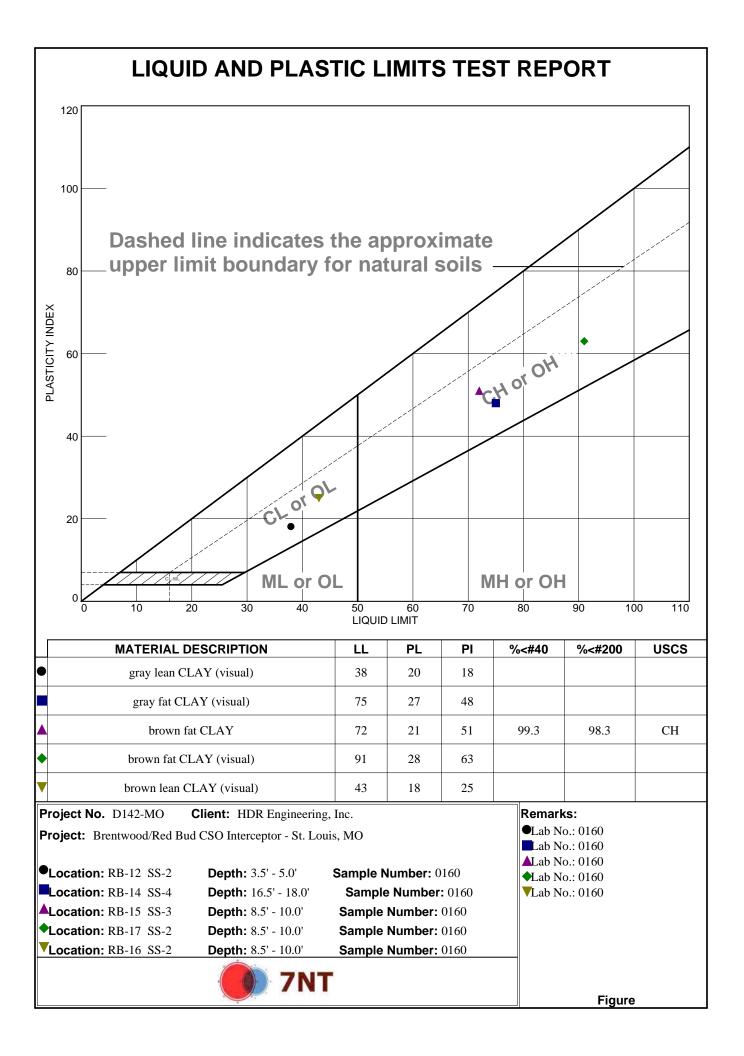
Hygroscopic moisture = 2.8%

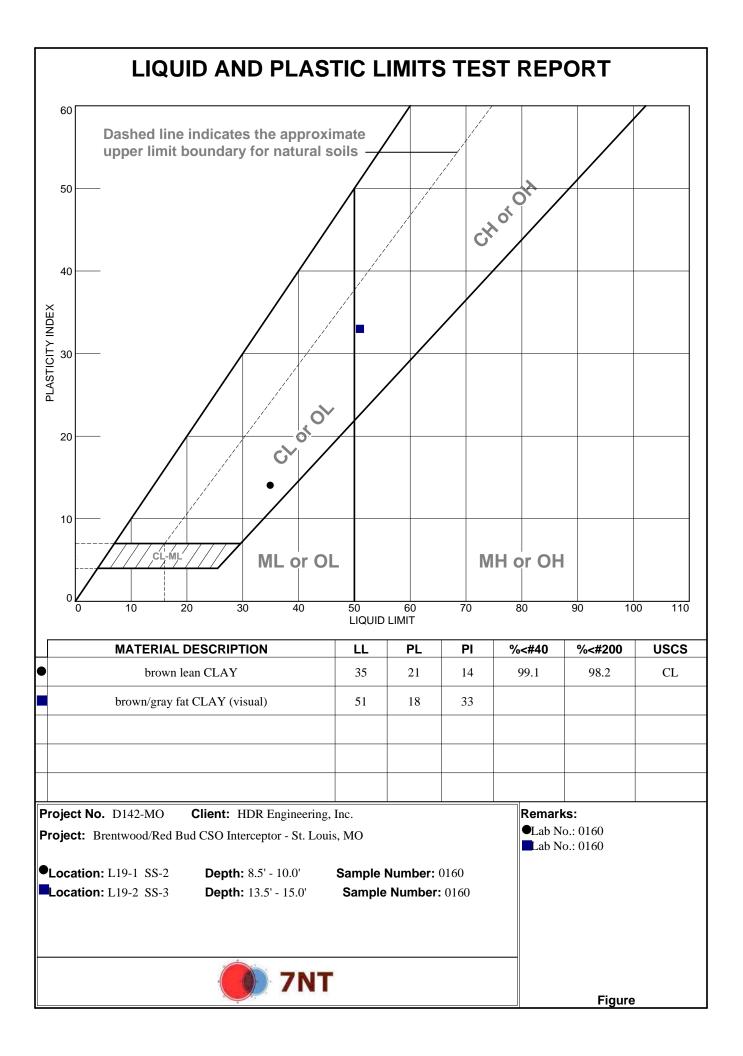
Automatic temperature correction Composite correction (fluid density and meniscus height) at 20 deg. C = -5.0

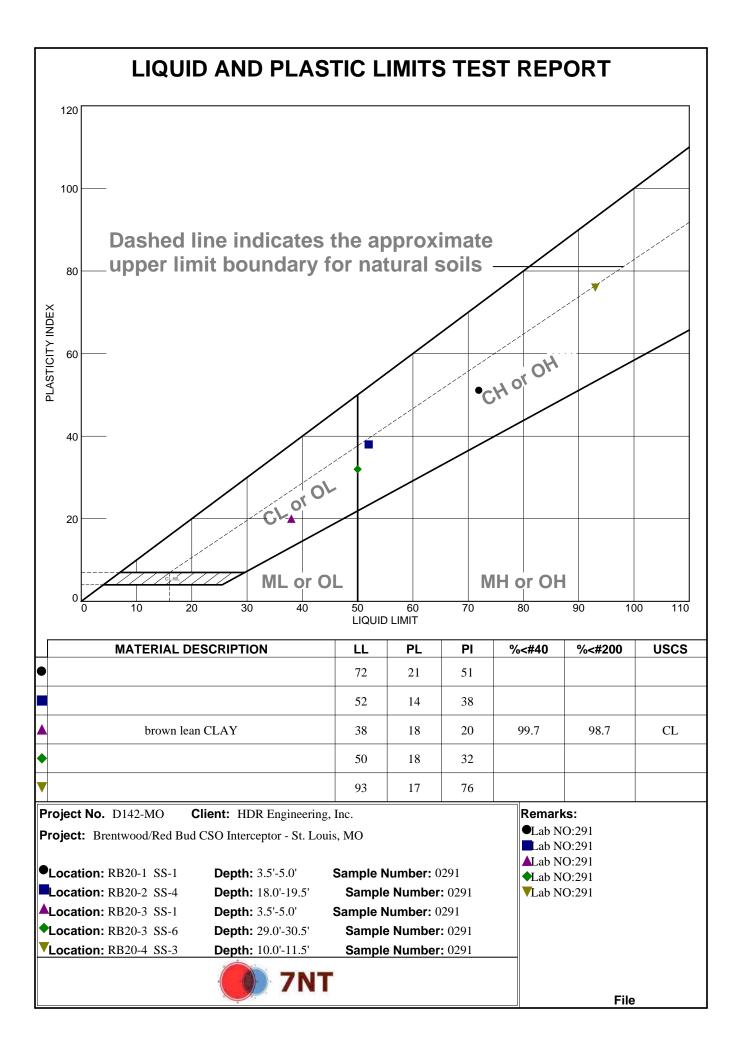
Meniscus correction only = 0.0

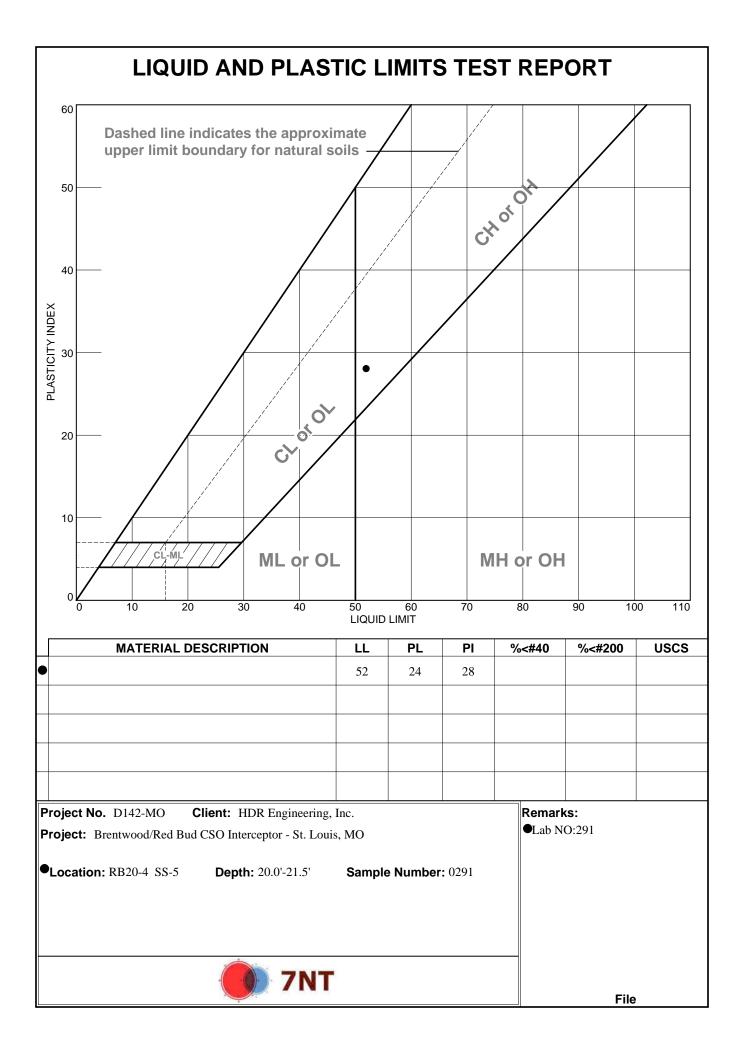
Specific gravity of solids = 2.65


Hydrometer type = 152H


Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	19.4	53.0	47.8	0.0137	53.0	7.6	0.0379	91.4	8.6
2.00	19.4	48.0	42.8	0.0137	48.0	8.4	0.0282	81.8	18.2
5.00	19.4	38.0	32.8	0.0137	38.0	10.1	0.0195	62.7	37.3
15.00	19.4	30.0	24.8	0.0137	30.0	11.4	0.0120	47.4	52.6
30.00	19.6	25.0	19.9	0.0137	25.0	12.2	0.0087	38.0	62.0
60.00	19.9	23.0	17.9	0.0137	23.0	12.5	0.0062	34.3	65.7
120.00	20.5	21.0	16.1	0.0136	21.0	12.9	0.0044	30.7	69.3
250.00	21.7	19.0	14.3	0.0134	19.0	13.2	0.0031	27.4	72.6
1440.00	19.4	18.0	12.8	0.0137	18.0	13.3	0.0013	24.5	75.5


4/9/2020


0		Gravel				Sand				Fines	
Cobbles	Coarse	Fine	Total	l Coa	rse Mec	lium F	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0 0	.3	1.0	1.3	66.7	32.0	98.7
		·					1		1		
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

ASTM D7012, Method C - Compressive Strength of Intact Rock Core Specimen Client HDR Engineering Inc. Project No. D142-MO Project Brentwood/Red Bud CSO Interceptor Test Date: 4/8/2020 Location/ ID: RB20-1 9.9'-11.1' (10.1'-10.5') **Specimen Properties Final Specimen Figure** Average Diameter, in: 1.9760 Average Height, in: 4.8370 Area, in^2 : 3.067 Volume, in³: 14.83 Wet Mass of Specimen, lb: 674.50 Moisture Content, %: 0.57 Dry Mass of Specimen, lb: 670.70 Wet Unit Weight, γ (lb/ft³): 78575.3 VT Job / Lab No .: DULZ - MD /741 Dry Unit Weight, γ_d (lb/ft³): 78132.6 04/08/2020 14:37 Boring: RBZ0-1 Depth: 9.9'-11.1' (10.1'-10.5') Description: Light gray LIMESTONE, small shell fossils, small vertical cracks. Result Compressive Strength of Rock Core, psi: 16959 0.8 Strain (%): Bedrock Strength: Very Strong 18000 16000 14000 Compressive Stress (psi) 12000 10000 8000 6000 4000 2000 0 0.0 0.1 0.2 0.4 0.6 0.7 0.8 0.9 0.3 0.5 1.0 Axial Strain, e (%) Notes:

7NT

ASTM D2216 - Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Client: HDR Engineering, Inc. Project: Brentwood/Red Bud CSO Interceptor - St. Louis, MO Lab No.: 160 Project No.: D142-MO Date: 8/27/2019

RB-1SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 25.1 RB-1SS-3 $6.0 \cdot 7.5$ $1.8 \cdot 2.3$ 22.1 RB-1SS-4 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 20.5 RB-2SS-1 $0.0 \cdot 1.5$ $0.0 \cdot 0.5$ 23.7 RB-2SS-5 $18.5 \cdot 20.0$ $5.6 \cdot 6.1$ 12.3 RB-2SS-6 $21.5 \cdot 23.0$ $6.6 \cdot 7.0$ 20.0 RB-3SS-1 $0.0 \cdot 1.5$ $0.0 \cdot 0.5$ 20.9 RB-3SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 24.8 RB-3SS-4 $13.5 \cdot 15.0$ $4.1 \cdot 4.6$ 15.8 RB-3SS-6 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 10.0 RB-8SS-2 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 26.0 RB-8SS-4 $18.5 \cdot 20.0$ $5.6 \cdot 6.1$ 23.6 RB-8SS-5 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 13.6 RB-8SS-5 $23.5 \cdot 5.0$ $1.1 \cdot 1.5$ 22.4 RB-12SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 27.7 RB-13SS-1 $0.0 \cdot 1.5$ $0.0 \cdot 0.5$ 22.7 RB-13SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 27.6 RB-13SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 27.0 RB-14SS-4 $16.5 \cdot 18.0$ $5.0 \cdot 5.5$ 28.7 RB-15SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 24.7 RB-16SS-1 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 24.0 RB-17SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 24.7 RB-18SS-3<	Boring Number	Sample Number	Depth (ft)	Depth (m)	Moisture Content (%)	Comments
RB-1 SS-4 8.5 - 10.0 2.6 - 3.0 20.5 RB-2 SS-1 0.0 - 1.5 0.0 - 0.5 23.7 RB-2 SS-5 18.5 - 20.0 5.6 - 6.1 12.3 RB-2 SS-6 21.5 - 23.0 6.6 - 7.0 20.0 RB-3 SS-1 0.0 - 1.5 0.0 - 0.5 20.9 RB-3 SS-3 8.5 - 10.0 2.6 - 3.0 24.8 RB-3 SS-4 13.5 - 15.0 4.1 - 4.6 15.8 RB-3 SS-6 23.5 - 25.0 7.2 - 7.6 10.0 RB-8 SS-2 8.5 - 10.0 2.6 - 3.0 26.0 RB-8 SS-4 18.5 - 20.0 5.6 - 6.1 23.6 RB-8 SS-5 23.5 - 5.0 7.2 - 7.6 13.6 RB-12 SS-3 8.5 - 10.0 2.6 - 3.0 27.7 RB-13 SS-1 0.0 - 1.5 0.0 - 0.5 22.7 RB-13 SS-3 8.5 - 10.0 2.6 - 3.0 27.0 RB-13 SS-4 16.5 - 18.0 </td <td>RB-1</td> <td>SS-2</td> <td>3.5 - 5.0</td> <td>1.1 - 1.5</td> <td>25.1</td> <td></td>	RB-1	SS-2	3.5 - 5.0	1.1 - 1.5	25.1	
RB-2SS-1 $0.0 \cdot 1.5$ $0.0 \cdot 0.5$ 23.7 RB-2SS-5 $18.5 \cdot 20.0$ $5.6 \cdot 6.1$ 12.3 RB-2SS-6 $21.5 \cdot 23.0$ $6.6 \cdot 7.0$ 20.0 RB-3SS-1 $0.0 \cdot 1.5$ $0.0 \cdot 0.5$ 20.9 RB-3SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 24.8 RB-3SS-4 $13.5 \cdot 15.0$ $4.1 \cdot 4.6$ 15.8 RB-3SS-6 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 10.0 RB-8SS-2 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 26.0 RB-8SS-4 $18.5 \cdot 20.0$ $5.6 \cdot 6.1$ 23.6 RB-8SS-5 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 13.6 RB-8SS-5 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 13.6 RB-8SS-5 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 13.6 RB-12SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 22.4 RB-12SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 27.7 RB-13SS-1 $0.0 \cdot 1.5$ $0.0 \cdot 0.5$ 22.7 RB-13SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 27.0 RB-14SS-4 $16.5 \cdot 18.0$ $5.0 \cdot 5.5$ 28.7 RB-15SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 24.0 RB-16SS-1 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 24.0 RB-17SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 24.7 RB-18SS-3 $13.5 \cdot 15.0$ $1.1 \cdot 1.5$ 28.0 RB-19SS-4 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 28.0 RB-19	RB-1	SS-3	6.0 - 7.5	1.8 - 2.3	22.1	
RB-2SS-5 $18.5 - 20.0$ $5.6 - 6.1$ 12.3 RB-2SS-6 $21.5 - 23.0$ $6.6 - 7.0$ 20.0 RB-3SS-1 $0.0 - 1.5$ $0.0 - 0.5$ 20.9 RB-3SS-3 $8.5 - 10.0$ $2.6 - 3.0$ 24.8 RB-3SS-4 $13.5 - 15.0$ $4.1 - 4.6$ 15.8 RB-3SS-6 $23.5 - 25.0$ $7.2 - 7.6$ 10.0 RB-8SS-2 $8.5 - 10.0$ $2.6 - 3.0$ 26.0 RB-8SS-2 $8.5 - 10.0$ $2.6 - 6.1$ 23.6 RB-8SS-2 $8.5 - 10.0$ $2.6 - 6.1$ 23.6 RB-8SS-2 $3.5 - 5.0$ $7.2 - 7.6$ 13.6 RB-8SS-2 $3.5 - 5.0$ $1.1 - 1.5$ 22.4 RB-12SS-2 $3.5 - 5.0$ $1.1 - 1.5$ 22.7 RB-13SS-1 $0.0 - 1.5$ $0.0 - 0.5$ 22.7 RB-13SS-3 $8.5 - 10.0$ $2.6 - 3.0$ 27.0 RB-14SS-1 $3.5 - 5.0$ $1.1 - 1.5$ 22.2 RB-14SS-4 $16.5 - 18.0$ $5.0 - 5.5$ 28.7 RB-15SS-3 $8.5 - 10.0$ $2.6 - 3.0$ 24.7 RB-16SS-1 $3.5 - 5.0$ $1.1 - 1.5$ 24.0 RB-17SS-3 $8.5 - 10.0$ $2.6 - 3.0$ 24.7 RB-18SS-3 $13.5 - 15.0$ $4.1 - 4.6$ 31.7 RB-19SS-2 $3.5 - 5.0$ $1.1 - 1.5$ 28.0 RB-19SS-4 $13.5 - 5.0$ $1.1 - 1.5$ 16.4 L19-1SS-4	RB-1	SS-4	8.5 - 10.0	2.6 - 3.0	20.5	
RB-2SS-6 $21.5 \cdot 23.0$ $6.6 \cdot 7.0$ 20.0 RB-3SS-1 $0.0 \cdot 1.5$ $0.0 \cdot 0.5$ 20.9 RB-3SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 24.8 RB-3SS-4 $13.5 \cdot 15.0$ $4.1 \cdot 4.6$ 15.8 RB-3SS-6 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 10.0 RB-8SS-2 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 26.0 RB-8SS-4 $18.5 \cdot 20.0$ $5.6 \cdot 6.1$ 23.6 RB-8SS-5 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 13.6 RB-12SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 22.4 RB-12SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 27.7 RB-13SS-1 $0.0 \cdot 1.5$ $0.0 \cdot 0.5$ 22.7 RB-13SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 27.6 RB-13SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 27.0 RB-14SS-4 $16.5 \cdot 18.0$ $5.0 \cdot 5.5$ 28.7 RB-15SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 24.0 RB-15SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 24.7 RB-16SS-1 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 28.0 RB-18SS-3 $13.5 \cdot 15.0$ $4.1 \cdot 4.6$ 31.7 RB-19SS-4 $13.5 \cdot 15.0$ $4.1 \cdot 4.6$ 5.5 L19-1SS-4 $13.5 \cdot 5.0$ $1.1 \cdot 1.5$ 18.2	RB-2	SS-1	0.0 - 1.5	0.0 - 0.5	23.7	
RB-3SS-1 $0.0 \cdot 1.5$ $0.0 \cdot 0.5$ 20.9 RB-3SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 24.8 RB-3SS-6 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 10.0 RB-8SS-2 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 26.0 RB-8SS-2 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 26.0 RB-8SS-4 $18.5 \cdot 20.0$ $5.6 \cdot 6.1$ 23.6 RB-8SS-5 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 13.6 RB-8SS-5 $23.5 \cdot 25.0$ $7.2 \cdot 7.6$ 13.6 RB-12SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 22.4 RB-12SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 27.7 RB-13SS-1 $0.0 \cdot 1.5$ $0.0 \cdot 0.5$ 22.7 RB-13SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 27.6 RB-13SS-3 $8.5 \cdot 10.0$ $2.6 \cdot 3.0$ 27.0 RB-14SS-1 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 22.2 RB-14SS-4 $16.5 \cdot 18.0$ $5.0 \cdot 5.5$ 28.7 RB-15SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 24.0 RB-16SS-1 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 24.0 RB-18SS-3 $13.5 \cdot 15.0$ $4.1 \cdot 4.6$ 31.7 RB-19SS-2 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 28.0 RB-19SS-4 $13.5 \cdot 15.0$ $4.1 \cdot 4.6$ 5.5 L19-1SS-4 $18.5 \cdot 20.0$ $5.6 \cdot 6.1$ 11.8 L19-2SS-1 $3.5 \cdot 5.0$ $1.1 \cdot 1.5$ 18.2	RB-2	SS-5	18.5 - 20.0	5.6 - 6.1	12.3	
RB-3SS-38.5 - 10.02.6 - 3.024.8RB-3SS-413.5 - 15.04.1 - 4.615.8RB-3SS-623.5 - 25.07.2 - 7.610.0RB-8SS-28.5 - 10.02.6 - 3.026.0RB-8SS-418.5 - 20.05.6 - 6.123.6RB-8SS-523.5 - 25.07.2 - 7.613.6RB-12SS-23.5 - 5.01.1 - 1.522.4RB-12SS-38.5 - 10.02.6 - 3.027.7RB-13SS-10.0 - 1.50.0 - 0.522.7RB-13SS-23.5 - 5.01.1 - 1.527.6RB-13SS-23.5 - 5.01.1 - 1.527.6RB-13SS-38.5 - 10.02.6 - 3.027.0RB-14SS-13.5 - 5.01.1 - 1.522.2RB-14SS-38.5 - 10.02.6 - 3.027.0RB-14SS-416.5 - 18.05.0 - 5.528.7RB-15SS-23.5 - 5.01.1 - 1.524.0RB-15SS-38.5 - 10.02.6 - 3.024.7RB-16SS-13.5 - 5.01.1 - 1.525.6RB-18SS-313.5 - 15.04.1 - 4.631.7RB-19SS-23.5 - 5.01.1 - 1.528.0RB-19SS-413.5 - 15.04.1 - 4.65.5L19-1SS-418.5 - 20.05.6 - 6.111.8L19-1SS-418.5 - 20.05.6 - 6.111.8L19-2SS-13.5 - 5.01.1 - 1.5 <td>RB-2</td> <td>SS-6</td> <td>21.5 - 23.0</td> <td>6.6 - 7.0</td> <td>20.0</td> <td></td>	RB-2	SS-6	21.5 - 23.0	6.6 - 7.0	20.0	
RB-3 SS-4 13.5 - 15.0 4.1 - 4.6 15.8 RB-3 SS-6 23.5 - 25.0 7.2 - 7.6 10.0 RB-8 SS-2 8.5 - 10.0 2.6 - 3.0 26.0 RB-8 SS-4 18.5 - 20.0 5.6 - 6.1 23.6 RB-8 SS-5 23.5 - 25.0 7.2 - 7.6 13.6 RB-8 SS-2 3.5 - 5.0 1.1 - 1.5 22.4 RB-12 SS-3 8.5 - 10.0 2.6 - 3.0 27.7 RB-13 SS-1 0.0 - 1.5 0.0 - 0.5 22.7 RB-13 SS-2 3.5 - 5.0 1.1 - 1.5 27.6 RB-13 SS-3 8.5 - 10.0 2.6 - 3.0 27.0 RB-13 SS-3 8.5 - 10.0 2.6 - 3.0 27.0 RB-14 SS-1 3.5 - 5.0 1.1 - 1.5 22.2 RB-14 SS-4 16.5 - 18.0 5.0 - 5.5 28.7 RB-15 SS-2 3.5 - 5.0 1.1 - 1.5 24.0 RB-15 SS-3 8.5 - 10.0	RB-3	SS-1	0.0 - 1.5	0.0 - 0.5	20.9	
RB-3 SS-6 23.5 - 25.0 7.2 - 7.6 10.0 RB-8 SS-2 8.5 - 10.0 2.6 - 3.0 26.0 RB-8 SS-4 18.5 - 20.0 5.6 - 6.1 23.6 RB-8 SS-5 23.5 - 25.0 7.2 - 7.6 13.6 RB-12 SS-2 3.5 - 5.0 1.1 - 1.5 22.4 RB-12 SS-3 8.5 - 10.0 2.6 - 3.0 27.7 RB-13 SS-1 0.0 - 1.5 0.0 - 0.5 22.7 RB-13 SS-2 3.5 - 5.0 1.1 - 1.5 27.6 RB-13 SS-3 8.5 - 10.0 2.6 - 3.0 27.0 RB-13 SS-3 8.5 - 10.0 2.6 - 3.0 27.0 RB-14 SS-1 3.5 - 5.0 1.1 - 1.5 22.2 RB-14 SS-4 16.5 - 18.0 5.0 - 5.5 28.7 RB-15 SS-2 3.5 - 5.0 1.1 - 1.5 24.0 RB-15 SS-3 8.5 - 10.0 2.6 - 3.0 24.7 RB-16 SS-1 3.5 - 5.0	RB-3	SS-3	8.5 - 10.0	2.6 - 3.0	24.8	
RB-8 SS-2 8.5 - 10.0 2.6 - 3.0 26.0 RB-8 SS-4 18.5 - 20.0 5.6 - 6.1 23.6 RB-8 SS-5 23.5 - 25.0 7.2 - 7.6 13.6 RB-12 SS-2 3.5 - 5.0 1.1 - 1.5 22.4 RB-12 SS-3 8.5 - 10.0 2.6 - 3.0 27.7 RB-13 SS-1 0.0 - 1.5 0.0 - 0.5 22.7 RB-13 SS-2 3.5 - 5.0 1.1 - 1.5 27.6 RB-13 SS-2 3.5 - 5.0 1.1 - 1.5 27.6 RB-13 SS-3 8.5 - 10.0 2.6 - 3.0 27.0 RB-14 SS-1 3.5 - 5.0 1.1 - 1.5 22.2 RB-14 SS-4 16.5 - 18.0 5.0 - 5.5 28.7 RB-15 SS-2 3.5 - 5.0 1.1 - 1.5 24.0 RB-16 SS-1 3.5 - 5.0 1.1 - 1.5 25.6 RB-18 SS-3 13.5 - 15.0 1.1 - 1.5 28.0 RB-19 SS-4 13.5 - 5.0	RB-3	SS-4	13.5 - 15.0	4.1 - 4.6	15.8	
RB-8SS-418.5 - 20.05.6 - 6.123.6RB-8SS-523.5 - 25.07.2 - 7.613.6RB-12SS-23.5 - 5.01.1 - 1.522.4RB-12SS-38.5 - 10.02.6 - 3.027.7RB-13SS-10.0 - 1.50.0 - 0.522.7RB-13SS-23.5 - 5.01.1 - 1.527.6RB-13SS-23.5 - 5.01.1 - 1.527.6RB-13SS-38.5 - 10.02.6 - 3.027.0RB-14SS-13.5 - 5.01.1 - 1.522.2RB-14SS-416.5 - 18.05.0 - 5.528.7RB-15SS-23.5 - 5.01.1 - 1.524.0RB-15SS-38.5 - 10.02.6 - 3.024.7RB-16SS-13.5 - 5.01.1 - 1.525.6RB-18SS-31.3 - 15.04.1 - 4.631.7RB-19SS-23.5 - 5.01.1 - 1.528.0RB-19SS-413.5 - 15.04.1 - 4.65.5L19-1SS-13.5 - 5.01.1 - 1.516.4L19-1SS-418.5 - 20.05.6 - 6.111.8L19-2SS-13.5 - 5.01.1 - 1.518.2	RB-3	SS-6	23.5 - 25.0	7.2 - 7.6	10.0	
RB-8SS-523.5 - 25.07.2 - 7.613.6RB-12SS-23.5 - 5.01.1 - 1.522.4RB-12SS-38.5 - 10.02.6 - 3.027.7RB-13SS-10.0 - 1.50.0 - 0.522.7RB-13SS-23.5 - 5.01.1 - 1.527.6RB-13SS-38.5 - 10.02.6 - 3.027.0RB-14SS-13.5 - 5.01.1 - 1.522.2RB-14SS-13.5 - 5.01.1 - 1.522.2RB-15SS-23.5 - 5.01.1 - 1.524.0RB-15SS-23.5 - 5.01.1 - 1.524.0RB-16SS-13.5 - 5.01.1 - 1.524.0RB-18SS-31.3 - 15.04.1 - 4.631.7RB-19SS-23.5 - 5.01.1 - 1.528.0RB-19SS-413.5 - 15.04.1 - 4.65.5L19-1SS-13.5 - 5.01.1 - 1.516.4L19-1SS-13.5 - 5.01.1 - 1.516.4L19-2SS-13.5 - 5.01.1 - 1.518.2	RB-8	SS-2	8.5 - 10.0	2.6 - 3.0	26.0	
RB-12 SS-2 3.5 - 5.0 1.1 - 1.5 22.4 RB-12 SS-3 8.5 - 10.0 2.6 - 3.0 27.7 RB-13 SS-1 0.0 - 1.5 0.0 - 0.5 22.7 RB-13 SS-2 3.5 - 5.0 1.1 - 1.5 27.6 RB-13 SS-2 3.5 - 5.0 1.1 - 1.5 27.0 RB-13 SS-3 8.5 - 10.0 2.6 - 3.0 27.0 RB-13 SS-3 8.5 - 10.0 2.6 - 3.0 27.0 RB-14 SS-1 3.5 - 5.0 1.1 - 1.5 22.2 RB-14 SS-4 16.5 - 18.0 5.0 - 5.5 28.7 RB-15 SS-2 3.5 - 5.0 1.1 - 1.5 24.0 RB-15 SS-3 8.5 - 10.0 2.6 - 3.0 24.7 RB-16 SS-1 3.5 - 5.0 1.1 - 1.5 25.6 RB-18 SS-3 13.5 - 15.0 4.1 - 4.6 31.7 RB-19 SS-2 3.5 - 5.0 1.1 - 1.5 28.0 RB-19 SS-4 13.5 - 5.0	RB-8	SS-4	18.5 - 20.0	5.6 - 6.1	23.6	
RB-12SS-38.5 - 10.02.6 - 3.027.7RB-13SS-10.0 - 1.50.0 - 0.522.7RB-13SS-23.5 - 5.01.1 - 1.527.6RB-13SS-38.5 - 10.02.6 - 3.027.0RB-14SS-13.5 - 5.01.1 - 1.522.2RB-14SS-416.5 - 18.05.0 - 5.528.7RB-15SS-23.5 - 5.01.1 - 1.524.0RB-15SS-38.5 - 10.02.6 - 3.024.7RB-16SS-13.5 - 5.01.1 - 1.525.6RB-18SS-31.35 - 15.04.1 - 4.631.7RB-19SS-23.5 - 5.01.1 - 1.528.0RB-19SS-413.5 - 15.04.1 - 4.65.5L19-1SS-13.5 - 5.01.1 - 1.516.4L19-1SS-418.5 - 20.05.6 - 6.111.8L19-2SS-13.5 - 5.01.1 - 1.518.2	RB-8	SS-5	23.5 - 25.0	7.2 - 7.6	13.6	
RB-13SS-1 $0.0 - 1.5$ $0.0 - 0.5$ 22.7 RB-13SS-2 $3.5 - 5.0$ $1.1 - 1.5$ 27.6 RB-13SS-3 $8.5 - 10.0$ $2.6 - 3.0$ 27.0 RB-14SS-1 $3.5 - 5.0$ $1.1 - 1.5$ 22.2 RB-14SS-4 $16.5 - 18.0$ $5.0 - 5.5$ 28.7 RB-15SS-2 $3.5 - 5.0$ $1.1 - 1.5$ 24.0 RB-15SS-3 $8.5 - 10.0$ $2.6 - 3.0$ 24.7 RB-16SS-1 $3.5 - 5.0$ $1.1 - 1.5$ 25.6 RB-18SS-3 $13.5 - 15.0$ $4.1 - 4.6$ 31.7 RB-19SS-2 $3.5 - 5.0$ $1.1 - 1.5$ 28.0 RB-19SS-4 $13.5 - 15.0$ $4.1 - 4.6$ 5.5 L19-1SS-4 $13.5 - 5.0$ $1.1 - 1.5$ 16.4 L19-2SS-1 $3.5 - 5.0$ $1.1 - 1.5$ 18.2	RB-12	SS-2	3.5 - 5.0	1.1 - 1.5	22.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RB-12	SS-3	8.5 - 10.0	2.6 - 3.0	27.7	
RB-13SS-38.5 - 10.02.6 - 3.027.0RB-14SS-13.5 - 5.01.1 - 1.522.2RB-14SS-416.5 - 18.05.0 - 5.528.7RB-15SS-23.5 - 5.01.1 - 1.524.0RB-15SS-38.5 - 10.02.6 - 3.024.7RB-16SS-13.5 - 5.01.1 - 1.525.6RB-18SS-313.5 - 15.04.1 - 4.631.7RB-19SS-23.5 - 5.01.1 - 1.528.0RB-19SS-413.5 - 15.04.1 - 4.65.5L19-1SS-13.5 - 5.01.1 - 1.516.4L19-1SS-418.5 - 20.05.6 - 6.111.8L19-2SS-13.5 - 5.01.1 - 1.518.2	RB-13	SS-1	0.0 - 1.5	0.0 - 0.5	22.7	
RB-14SS-13.5 - 5.01.1 - 1.522.2RB-14SS-416.5 - 18.05.0 - 5.528.7RB-15SS-23.5 - 5.01.1 - 1.524.0RB-15SS-38.5 - 10.02.6 - 3.024.7RB-16SS-13.5 - 5.01.1 - 1.525.6RB-18SS-313.5 - 15.04.1 - 4.631.7RB-19SS-23.5 - 5.01.1 - 1.528.0RB-19SS-413.5 - 15.04.1 - 4.65.5L19-1SS-13.5 - 5.01.1 - 1.516.4L19-1SS-418.5 - 20.05.6 - 6.111.8L19-2SS-13.5 - 5.01.1 - 1.518.2	RB-13	SS-2	3.5 - 5.0	1.1 - 1.5	27.6	
RB-14SS-4 $16.5 - 18.0$ $5.0 - 5.5$ 28.7 RB-15SS-2 $3.5 - 5.0$ $1.1 - 1.5$ 24.0 RB-15SS-3 $8.5 - 10.0$ $2.6 - 3.0$ 24.7 RB-16SS-1 $3.5 - 5.0$ $1.1 - 1.5$ 25.6 RB-18SS-3 $13.5 - 15.0$ $4.1 - 4.6$ 31.7 RB-19SS-2 $3.5 - 5.0$ $1.1 - 1.5$ 28.0 RB-19SS-4 $13.5 - 15.0$ $4.1 - 4.6$ 5.5 L19-1SS-1 $3.5 - 5.0$ $1.1 - 1.5$ 16.4 L19-1SS-4 $18.5 - 20.0$ $5.6 - 6.1$ 11.8 L19-2SS-1 $3.5 - 5.0$ $1.1 - 1.5$ 18.2	RB-13	SS-3	8.5 - 10.0	2.6 - 3.0	27.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RB-14	SS-1	3.5 - 5.0	1.1 - 1.5	22.2	
RB-15SS-38.5 - 10.02.6 - 3.024.7RB-16SS-13.5 - 5.01.1 - 1.525.6RB-18SS-313.5 - 15.04.1 - 4.631.7RB-19SS-23.5 - 5.01.1 - 1.528.0RB-19SS-413.5 - 15.04.1 - 4.65.5L19-1SS-13.5 - 5.01.1 - 1.516.4L19-1SS-418.5 - 20.05.6 - 6.111.8L19-2SS-13.5 - 5.01.1 - 1.518.2	RB-14	SS-4	16.5 - 18.0	5.0 - 5.5	28.7	
RB-16SS-13.5 - 5.01.1 - 1.525.6RB-18SS-313.5 - 15.04.1 - 4.631.7RB-19SS-23.5 - 5.01.1 - 1.528.0RB-19SS-413.5 - 15.04.1 - 4.65.5L19-1SS-13.5 - 5.01.1 - 1.516.4L19-1SS-418.5 - 20.05.6 - 6.111.8L19-2SS-13.5 - 5.01.1 - 1.518.2	RB-15	SS-2	3.5 - 5.0	1.1 - 1.5	24.0	
RB-18SS-313.5 - 15.04.1 - 4.631.7RB-19SS-23.5 - 5.01.1 - 1.528.0RB-19SS-413.5 - 15.04.1 - 4.65.5L19-1SS-13.5 - 5.01.1 - 1.516.4L19-1SS-418.5 - 20.05.6 - 6.111.8L19-2SS-13.5 - 5.01.1 - 1.518.2	RB-15	SS-3	8.5 - 10.0	2.6 - 3.0	24.7	
RB-19 SS-2 3.5 - 5.0 1.1 - 1.5 28.0 RB-19 SS-4 13.5 - 15.0 4.1 - 4.6 5.5 L19-1 SS-1 3.5 - 5.0 1.1 - 1.5 16.4 L19-1 SS-4 18.5 - 20.0 5.6 - 6.1 11.8 L19-2 SS-1 3.5 - 5.0 1.1 - 1.5 18.2	RB-16	SS-1	3.5 - 5.0	1.1 - 1.5	25.6	
RB-19 SS-4 13.5 - 15.0 4.1 - 4.6 5.5 L19-1 SS-1 3.5 - 5.0 1.1 - 1.5 16.4 L19-1 SS-4 18.5 - 20.0 5.6 - 6.1 11.8 L19-2 SS-1 3.5 - 5.0 1.1 - 1.5 18.2	RB-18	SS-3	13.5 - 15.0	4.1 - 4.6	31.7	
L19-1SS-13.5 - 5.01.1 - 1.516.4L19-1SS-418.5 - 20.05.6 - 6.111.8L19-2SS-13.5 - 5.01.1 - 1.518.2	RB-19	SS-2	3.5 - 5.0	1.1 - 1.5	28.0	
L19-1SS-418.5 - 20.05.6 - 6.111.8L19-2SS-13.5 - 5.01.1 - 1.518.2	RB-19	SS-4	13.5 - 15.0	4.1 - 4.6	5.5	
L19-2 SS-1 3.5 - 5.0 1.1 - 1.5 18.2	L19-1	SS-1	3.5 - 5.0	1.1 - 1.5	16.4	
L19-2 SS-1 3.5 - 5.0 1.1 - 1.5 18.2	L19-1	SS-4	18.5 - 20.0	5.6 - 6.1	11.8	
	L19-2	SS-1		1.1 - 1.5	18.2	
	L19-2	SS-3	13.5 - 15.0	4.1 - 4.6	14.9	

7NT

ASTM D2216 - Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

-

Client: HDR Engineering Inc. Project: Brentwood/Red Bud CSO Interceptor Boring Sample Depth (ft) Depth (m) Contant (%) Comments

Number	Number	Depth (ft)	Depth (m)	Content (%)	Comments
RB20-1	SS-1	3.5 - 5.0	1.1 - 1.5	32.5	
RB20-1	SS-2	8.5 - 10.0	2.6 - 3.0	15.3	
RB20-2	SS-2	8.5 - 10.0	2.6 - 3.0	28.5	
RB20-2	SS-4	18.0 - 19.5	5.5 - 5.9	19.9	
RB20-3	SS-1	3.5 - 5.0	1.1 - 1.5	22.1	
RB20-3	SS-3	13.5 - 15.0	4.1 - 4.6	25.1	
RB20-3	SS-6	29.0 - 30.5	8.8 - 9.3	15.9	
RB20-4	SS-3	10.0 - 11.5	3.0 - 3.5	28.0	
RB20-4	SS-4	15.0 - 16.5	4.6 - 5.0	26.6	
RB20-4	SS-5	20.0 - 21.5	6.1 - 6.6	24.2	

April 13, 2018

Mr. Doug Hickey, Project Manager HDR Engineering 401 South 18th Street, Suite 300 St. Louis, MO 63103 Doug.Hickey@hdrinc.com

RE: GEOTECHNICAL DATA REPORT L-111 (LINDEN) SEWER SEPARATION, RDP TRIBUTARIES (DEER CREEK) CSO TUNNEL (MSD NO. 12441)

Dear Mr. Hickey:

Our geotechnical data report for the referenced project is attached. We have appreciated this opportunity to assist you on this project and look forward to working with you again. Please contact us if you have questions concerning this report.

Sincerely,

SHANNON & WILSON, INC.

William B. Kremer, P.E. Senior Associate

VMC:WBK/tad

- Enc: Geotechnical Data Report, L-111 (Linden) Sewer Separation, RDP Tributaries (Deer Creek) CSO Tunnel (MSD No. 12441)
- c: Darcy Riegel, HDR, 401 South 18th Street, Suite 300, St. Louis, MO, 63103, Darcy.Riegel@hdrinc.com

Everett Litton, WSP USA, 211 N. Broadway, Suite 2800, St. Louis, MO 63102, everett.litton@wsp.com

GEOTECHNICAL DATA REPORT L-111 (LINDEN) SEWER SEPARATION RDP TRIBUTARIES (DEER CREEK) CSO TUNNEL MSD NO. 12441

April 13, 2018

Prepared for

METROPOLITAN ST. LOUIS SEWER DISTRICT

Prepared by

SHANNON & WILSON, INC.

2043 Westport Center Drive Saint Louis, MO 63141

Revision 2

41-1-37530-005

SHANNON & WILSON, INC.

TABLE OF CONTENTS

Page

1.0	SCOPE OF WORK	1
2.0	PROJECT DESCRIPTION	1
3.0	EXPLORATION AND TESTING	2
4.0	LOCAL GEOLOGY	8
5.0	SUBSURFACE PROFILE	9
6.0	LIMITATIONS OF REPORT	11

APPENDICES

APPENDIX A	
APPENDIX B	SOIL CLASSIFICATION CRITERIA AND EXPLORATORY BORINGS
APPENDIX C	BORINGS BACKFILL REPORTS AND RESTORATION PHOTOS
APPENDIX D	LABORATORY TEST REPORTS
Appendix E	

REVISION HISTORY

Revision No. 0

Initial issuance. No revisions applicable.

Revision No. 1

Revised per WSP comments.

Revision No. 2

Add borings L17-8 and L17-9, borings backfill reports and restoration photos.

GDR - Linden Sewer Separation Rev2/wp/VMC

Date: June 23, 2017

Date: July 28, 2017

Date: April 13, 2018

GEOTECHNICAL DATA REPORT L-111 (LINDEN) SEWER SEPARATION RDP TRIBUTARIES CSO TUNNEL MSD NUMBER 12441

1.0 SCOPE OF WORK

This Geotechnical Data Report (GDR) for the proposed L-111 (Linden) Separation Sewer was prepared for the Metropolitan St. Louis Sewer District (MSD); HDR, Inc. (HDR); and WSP by Shannon & Wilson, Inc. (S&W). This GDR presents geotechnical data collected during the FY17 geotechnical exploration program for use in designing and constructing the sewer. We understand that MSD may provide this GDR to Contractors for their use to plan construction and to develop designs for work elements for which they are responsible.

S&W's services are provided under the master subconsultant agreement (MSA) between HDR and S&W for professional services related to the RDP Tributaries & Upper RDP CSO Controls & Lower Meramec System Improvements (MSD Project No. 11153). The master subconsultant agreement is subject to MSD Contract No. 20202 which serves as the prime agreement between MSD and HDR. Services for the L-111 (Linden) Separation Sewer were authorized by Task Order 5 of the MSA. Specific exploration details are discussed within the Task Order. In brief, S&W's services included field oversight and logging of exploratory drilling and other field work for this study; assistance with coordination of site access and right-of-entry for drilling sites; laboratory testing; assembly of subsurface data; and GDR preparation. Exploratory drilling was provided by 7NT Enterprises, LLC (7NT) under separate contract through HDR.

2.0 PROJECT DESCRIPTION

The Linden Separation Sewer (MSD project #12441) is part of the Brentwood and Linden Combined Sewer System and part of the RDP Tributaries CSO Tunnel Project within the Deer Creek Watershed. The combined sewer system will be soft separated with cost effective private inflow removal. Soft separation will have sanitary flow to Black Creek Trunk sewer and peak sanitary overflow to Deer Creek Sanitary Tunnel.

The project area includes a 1,000-foot-wide belt originating in the northeast quadrant of the I-170/I-64 interchange and extending for about a mile north-northeast. The heavily urbanized area includes residences, high-rise buildings, and an interstate highway interchange. The project area occupies a portion of the west facing bluff of the Black Creek Valley. The upland is split by a northeast trending tributary valley that enters the Black Creek Valley near the I-170/I-64

GDR - Linden Sewer Separation Rev 2/wp/VMC

interchange. The upland east of this tributary valley is bounded by Hampton Branch Creek. The project area varies from an elevation of about 590 feet at its northern end to about elevation 480 feet near the southwest corner.

3.0 EXPLORATION AND TESTING

The exploration program included 20 soil borings, designated L17-1 through L17-20, and laboratory testing of collected samples. Boring locations are shown in Appendix A. Boring coordinates surveyed by Kowelman Engineering of St. Louis are provided in Table 1. Northings and Eastings are based on Modified State Plane. Ground surface elevations are based on NAVD 1988.

Boring	Northing	Easting	GS Elevation, feet
L17-1	1019627.6	866415.6	539.6
L17-2	1020696.8	866889.5	536.3
L17-3	1019123.2	865206.0	480.9
L17-4	1019666.7	865518.8	490.3
L17-5	1019924.8	865645.1	494.2
L17-6	1019868.2	865702.5	491.8
L17-7	1020305.4	866099.8	498.2
L17-8	1020919.5	866336.5	511.8
L17-9	1021027.6	866457.3	518.4
L17-10	1021289.2	866434.6	519.8
L17-11	1021271.3	866095.0	525.3
L17-12	1018658.2	865123.0	478.0
L17-13	1018673.3	865982.3	498.5
L17-14	1021679.5	866797.0	542.5
L17-15	1021972.4	866898.4	548.9
L17-16	1022250.0	865945.9	536.3
L17-17	1022454.4	865971.2	540.6
L17-18	1023112.4	866514.1	588.7
L17-19	1023775.3	866608.7	586.4
L17-20	1020328.1	866421.4	523.2

TABLE 1BORING COORDINATES

Soil logs and other drilling-related measurements and observations are provided in Appendix B. Borings backfill reports and restoration photos are provided in Appendix C. Laboratory test results and details are provided in Appendix D. Exploration and testing were completed as

GDR - Linden Sewer Separation Rev 2/wp/VMC

generally defined in the Geotechnical Investigation Work Plan for the RDP Tributaries & Upper CSO Controls & Lower Meramec Systems Improvements Near Surface Sewers (GIWP Near Surface Sewers) prepared by WSP and S&W. A copy of the GIWP is provided in Appendix E.

Borings were extended in soil to auger refusal or a depth of 5 feet below the planned sewer invert, whichever came first. Borings were advanced using 4-1/4-inch hollow-stem augers. Soil samples were collected using a split-spoon sampler on 5-foot centers along the boring length, and at 2.5-foot centers from 5 feet above to 5 feet below the proposed sewer invert. Standard Penetration Tests were completed with each split-spoon sample, in general accordance with ASTM Standard D1586. No rock coring was performed since none of the borings refused before reaching the target depth.

Collected soil samples were taken to S&W for laboratory determination of in-situ moisture content and Atterberg liquid and plastic limits, in general accordance with ASTM Standards D2216 and D4318, respectively. A summary of the laboratory test results is included in Table 2.

				Atterber	g Limits	Undrained
Boring	Depth, feet	USCS	Water Content, %	Liquid Limit, %	Plastic Limit, %	Shear Strength, tsf
L17-1	4.3	СН	24.9	-	-	-
L17-1	6.8	СН	24.6	-	-	-
L17-1	9.3	СН	24.3	60.9	21.8	-
L17-1	11.8	СН	29.6	-	-	-
L17-2	6.8	CL	28.0	40.7	17.8	-
L17-2	9.3	СН	37.7	-	-	-
L17-2	11.8	СН	23.1	-	-	-
L17-3	1.8	CL [Fill]	22.6	-	-	-
L17-3	4.3	CL	22.1	47.1	20.3	-
L17-3	9.3	СН	24.8	-	-	-
L17-3	14.3	СН	21.0	-	-	-
L17-3	16.8	СН	24.4	-	-	-
L17-3	19.3	СН	34.8	-	-	-
L17-3	21.8	CLAYSTONE	11.2	-	-	-
L17-3	24.3	CLAYSTONE	13.6	-	-	-
L17-4	3.6	CL	23.6	-	-	-
L17-4	4.8	CL	24.5	-	-	0.69
L17-4	5.3	CL	24.5	-	-	-

TABLE 2LABORATORY TEST RESULTS SUMMARY

				Atterber	g Limits	Undrained
			Water	Liquid	Plastic	Shear
Boring	Depth, feet	USCS	Content, %	Limit, %	Limit, %	Strength, tsf
L17-4	9.3	СН	23.0	55.9	19.6	-
L17-4	16.7	SHALE	12.8	-	-	-
L17-4	19.2	SHALE	11.7	-	-	-
L17-4	21.8	SHALE	12.7	-	-	-
L17-4	24.3	SHALE	15.7	-	-	-
L17-5	4.3	ML	23.9	-	-	-
L17-5	8.1	СН	24.1	-	-	-
L17-5	9.2	СН	23.6	60.9	21.8	-
L17-5	9.8	СН	22.1	-	-	-
L17-5	14.3	SHALE	14.6	-	-	-
L17-5	16.8	SHALE	14.2	-	-	-
L17-5	19.3	SHALE	14.3	-	-	-
L17-5	21.8	SHALE	10.1	-	-	-
L17-5	24.3	SHALE	10.9	-	-	-
L17-6	4.3	CL [Fill]	25.5	-	-	-
L17-6	9.3	CL	31.6	-	-	-
L17-6	11.8	CL	26.5	39.6	20.4	-
L17-6	12.6	CL	23.2	-	-	-
L17-6	13.8	CL	24.1	-	-	-
L17-6	16.8	SHALE	12.0	-	-	-
L17-6	19.3	SHALE	12.7	-	-	-
L17-6	21.8	SHALE	13.9	-	-	-
L17-7	4.3	CL	24.4	-	-	-
L17-7	9.3	СН	28.0	68.3	20.8	-
L17-7	14.3	СН	22.1	-	-	-
L17-7	16.5	SHALE	11.8	-	-	-
L17-7	19.3	SHALE	10.5	_	-	-
L17-7	24.3	SHALE	7.0	-	-	-
L17-8	4.3	CL	20.1	-	-	-
L17-8	6.1	CL	27.9	-	-	-
L17-8	7.1	CL	28.7	-	-	-
L17-8	7.6	CL	29.8	-	-	-
L17-8	9.3	CL	26.2	-	-	-
L17-8	14.3	СН	28.8	-	-	-
L17-8	16.8	СН	27.0	-	-	-
L17-8	19.2	СН	36.0	-	-	-
L17-8	21.8	СН	15.1	-	-	-

				Atterberg Limits		Undrained
			Water	Liquid	Plastic	Shear
Boring	Depth, feet	USCS	Content, %	Limit, %	Limit, %	Strength, tsf
L17-8	24.3	СН	15.6	-	-	-
L17-9	4.3	СН	154	-	-	-
L17-9	8.1	CL	26.5	-	-	-
L17-9	9.4	CL	26.2	-	-	0.73
L17-9	9.8	CL	26.3	-	-	-
L17-9	10.8	CL	25.3	-	-	-
L17-9	14.3	СН	24.4	-	-	-
L17-9	16.8	СН	26.1	-	-	-
L17-9	19.3	СН	22.0	-	-	-
L17-9	21.8	СН	23.8	-	-	-
L17-9	24.3	СН	9.7	-	-	-
L17-9	26.2	СН	15.6	-	-	-
L17-10	4.3	CL	24.6	-	-	-
L17-10	9.3	СН	25.0	-	-	-
L17-10	14.3	СН	30.6	-	-	-
L17-10	16.8	СН	19.1	-	-	-
L17-10	19.1	СН	5.0	-	-	-
L17-10	21.8	СН	19.0	-	-	-
L17-10	24.3	CLAYSTONE	20.0	-	-	-
L17-11	1.8	CL [Fill]	21.0	-	-	-
L17-11	3.6	CL	10.8	-	-	-
L17-11	6.8	CL	16.6	-	-	-
L17-11	9.3	CL	18.3	-	-	-
L17-11	11.8	СН	30.8	85.0	26.5	-
L17-11	14.3	СН	33.3	-	-	-
L17-11	16.8	GC	13.5	-	-	-
L17-11	19.3	CL	21.2	-	-	-
L17-12	4.3	CL	26.2	-	-	-
L17-12	9.3	CL	21.8	43.2	19.4	-
L17-12	11.8	CL	20.8	-	-	-
L17-12	14.3	CL	18.7	-	-	-
L17-12	16.8	CLAYSTONE	14.6	-	-	-
L17-12	19.3	CLAYSTONE	14.3	-	-	-
L17-13	4.3	CL	28.9	-	-	-
L17-13	9.3	СН	23.1	-	-	-
L17-13	11.8	СН	23.3	55.5	19.2	-
L17-13	14.3	СН	19.7	-	-	-

GDR - Linden Sewer Separation Rev 2/wp/VMC

				Atterberg Limits		Undrained
			Water	Liquid	Plastic	Shear
Boring	Depth, feet	USCS	Content, %	Limit, %	Limit, %	Strength, tsf
L17-13	16.8	СН	19.6	-	-	-
L17-13	19.3	CLAYSTONE	24.1	-	-	-
L17-14	4.3	CL	26.3	-	-	-
L17-14	6.8	СН	24.9	-	-	-
L17-14	9.3	СН	30.9	-	-	-
L17-14	11.8	СН	28.4	-	-	-
L17-14	14.3	СН	20.3	-	-	-
L17-14	16.2	СН	4.2	-	-	-
L17-15	4.3	CL	27.2	-	-	-
L17-15	6.8	СН	23.1	-	-	-
L17-15	9.3	CL	21.7	-	-	-
L17-15	11.8	CL	24.9	46.8	20.1	-
L17-15	14.3	СН	27.7	-	-	-
L17-15	16.8	СН	18.8	-	-	-
L17-16	1.8	CL [Fill]	22.7	-	-	-
L17-16	4.3	СН	21.4	-	-	-
L17-16	6.8	СН	26.7	-	-	-
L17-16	9.3	GC	22.7	-	-	-
L17-16	13.9	GC	3.4	-	-	-
L17-17	1.8	CL [Fill]	11.9	-	-	-
L17-17	4.3	CL [Fill]	37.4	-	-	-
L17-17	6.8	CL [Fill]	26.7	37.9	19.9	-
L17-17	9.3	CL [Fill]	9.9	-	-	-
L17-17	14.3	CL [Fill]	26.6	-	-	-
L17-18	4.3	CL	30.5	-	-	-
L17-18	6.1	CL	26.6	-	-	-
L17-18	7.3	CL	23.5	35.8	19.3	1.23
L17-18	7.9	CL	24.6	-	-	-
L17-18	8.8	СН	26.6	-	-	-
L17-18	11.8	СН	36.3	-	-	-
L17-18	14.3	СН	5.9	-	-	-
L17-18	16.8	СН	7.6	-	-	-
L17-19	4.3	СН	28.4	-	-	-
L17-19	6.8	CL	25.7	-	-	-
L17-19	9.3	CL	25.2	37.9	17.0	-
L17-19	11.8	CL	23.0	-	-	-
L17-19	14.3	СН	36.6	-	-	-

				Atterberg Limits		Undrained
Boring	Depth, feet	USCS	Water Content, %	Liquid Limit, %	Plastic Limit, %	Shear Strength, tsf
L17-20	4.3	СН	23.7	-	-	-
L17-20	11.8	СН	30.4	-	-	-
L17-20	14.3	СН	32.1	-	-	-
L17-20	16.8	СН	28.9	70.5	32.2	-
L17-20	19.3	СН	18.6	-	-	-

Composite samples were prepared from soil samples recovered at various depths for each boring and sent to Teklab, Inc. of Collinsville, Illinois for determination of soil corrosivity parameters. A summary of the corrosivity test results is included in Table 3.

No piezometers were installed for this project. Upon completion of drilling and sampling, the borings were backfilled with cement-bentonite grout placed through a grout pipe inserted to the boring bottom. The drill sites were then restored.

Boring	Chloride, mg/Kg-dry	Sulfate, mg/Kg-dry	Sulfide, Total, mg/Kg-dry	рН (1:1)	Resistivity, Solid, Ohms/cm	Percent Moisture, %
L17-1	354	130	< 35	7.08	891	22.2
L17-2	428	120 J	< 36	6.86	1200	27.4
L17-3	89	1680 S	52	4.44	690	14.6
L17-4	25 J	504	< 31	6.73	1400	11.7
L17-5	59	126	< 35	8.26	2540	14.8
L17-6	106	332	64	7.87	870	14.1
L17-7	42 J	125	< 33	8.25	2700	14.3
L17-8			Not test	ed.		
L17-9	74	147	< 37	7.08	1190	19.3
L17-10	60	129	< 34	8.37	1990	15.0
L17-11	36 J	87 J	< 34	8.1	2790	15.3
L17-12	37 J	178	< 31	6.05	2850	13.9
L17-13	205	1410	< 35	7.56	565	17.1
L17-14	113	110 J	< 38	8.57	1170	21.5
L17-15	227	140	< 37	7.89	1080	20.4
L17-16	88	181	< 36	8.46	1570	19.9
L17-17	73	237	< 35	8.47	2140	14.0
L17-18	224	145	< 36	7.11	1990	21.8
L17-19	277	179	< 38	7.11	1310	21.7
L17-20	152	223	< 38	8.05	1310	22.8

TABLE 3CORROSIVITY TEST RESULTS

4.0 LOCAL GEOLOGY

In upland, the overburden soil consists of a cover of Quaternary loess consisting of wind-blown silt carried from the floodplains of the Missouri and Mississippi Rivers and deposited on the surrounding areas during the later stages of the last glacial period. The silt has been modified by weathering to lean clay in most areas. In areas where the bedrock surface is formed in carbonate rocks, residual fat clay formed by weathering of the carbonate bedrock is typically present beneath the loess. In areas where the bedrock surface is formed in fine-grained clastic rocks such as claystone and shale, the overlying loess grades into a fat clay that in turn, grades into the underlying clastic bedrock.

In the main stream valleys, the overburden consists of silty alluvium containing varying amounts of clay and organic matter derived from the adjacent uplands. This material overlays sand, silt,

clay, and gravel. Shorter, tributary stream valleys contain lesser amounts of alluvium and may have no alluvium other than that found in the existing channel. In some cases, the original stream valleys have been narrowed by artificial fill placed along the original valley margins.

The uppermost rock is Pennsylvanian System clastic rocks that are predominantly shale, but can also include: claystone, siltstone, sandstone, coal, and limestone. The Pennsylvanian System rocks are present over most of the site and may vary in thickness from tens of feet to absent. The Pennsylvanian System rocks overlie limestone of the Mississippian System. The Mississippian System rocks underlie the entire site and are greater than 100 feet thick. The bedrock strata dip is generally less than about 5 degrees and no known faults cross the project site.

Within the project area the Mississippian System limestone has been partially dissolved by slightly acidic, meteoric water. The resultant solution cavities allow soil material from the overburden to be washed into the subsurface voids creating a depression in the land surface known as a "sinkhole". When many sinkholes are present the resultant topography is known as "karst" topography.

Since the Pennsylvanian System rocks are not solution prone, they form a protective cap over the Mississippian System rocks thereby reducing the likelihood of dissolution in the underlying Mississippian System limestone. Based on the 1930s topography, Figure A2 in Appendix A, only a few sinkholes are present in the project vicinity which indicates Pennsylvanian System rocks are likely present over much of the project area.

The natural soil washed into a sinkhole typically reflect the characteristics of the nearby in-place natural soil, however, the washed-in soil commonly exhibits less strength than the in-place soil. Bowl-shaped sinkholes may form gradually over long periods but in some cases sinkholes form rapidly when soil or rock bridging a void can no longer span the growing void and collapses.

5.0 SUBSURFACE PROFILE

Nine borings (L17-1, L17-2, L17-4, L17-6 to L17-9, L17-13, and L17-20) were drilled on asphalt or concrete pavement. Observed pavement thicknesses varied between 0.2 and 1.1 feet. The overburden soil observed in the borings consisted primarily of medium stiff to stiff, lean to fat clay becoming very stiff to hard at depth. Notable observed differences include:

- L17-3 several feet of clay fill;
- L17-5 a soft silt layer;

- L17-6 several feet of clay fill and soft clay;
- L17-7 and L17-13 several feet of soft clay;
- L17-11 and L17-16 several feet of clay fill and several feet of clayey gravel; and
- L17-17 15 feet of clay fill.

Ten borings encountered Pennsylvanian System claystone and shale that are considerably harder than the overlying soil but still augerable. Depth to the observed Pennsylvanian System rock varied from depths of 11.0 to 20.0 feet below the ground surface. Table 4 lists the observed top of rock depths for the Pennsylvanian System rock. The top of bedrock, as defined by auger refusal, was not encountered in any of the borings. Auger refusal in the project area is typically associated with Mississippian System limestone.

Boring	Top of Pennsylvanian System	Top of Mississippian System
L17-1	Not encountered	Not encountered
L17-2	Not encountered	Not encountered
L17-3	19.5 feet below grade	Not encountered
L17-4	14.0 feet below grade	Not encountered
L17-5	11.0 feet below grade	Not encountered
L17-6	15.0 feet below grade	Not encountered
L17-7	16.2 feet below grade	Not encountered
L17-8	19.5 feet below grade	Not encountered
L17-9	18.0 feet below grade	Not encountered
L17-10	20.0 feet below grade	Not encountered
L17-11	Not encountered	Not encountered
L17-12	15.5 feet below grade	Not encountered
L17-13	18.0 feet below grade	Not encountered
L17-14	16.5 feet below grade	Not encountered
L17-15	Not encountered	Not encountered
L17-16	14.2 feet below grade	Not encountered
L17-17	Not encountered	Not encountered
L17-18	Not encountered	Not encountered
L17-19	Not encountered	Not encountered
L17-20	Not encountered	Not encountered

TABLE 4TOP OF ROCK DATA

Groundwater was encountered in 7 of the 20 borings during drilling. Groundwater depth varied from 3.8 to 20.0 feet below grade. Recorded groundwater levels are shown in Table 5. None of the other borings encountered groundwater. The absence or presence of groundwater should not be construed to represent an exact or permanent condition. There is uncertainty with interpretation of short-term groundwater level readings in borings, particularly when the soil is of relatively low permeability such as the material overlying this site. Groundwater levels should be expected to fluctuate with variations in precipitation, site grading, and drainage conditions.

Boring	Depth During Drilling
L17-6	20.0 feet
L17-8	16.0 feet
L17-10	18.5 feet
L17-11	15.5 feet
L17-17	6.5 feet
L17-18	3.8 feet
L17-19	11.0 feet

TABLE 5 WATER LEVEL DATA

6.0 LIMITATIONS OF REPORT

The purpose of this GDR is to present information collected during the geotechnical investigation program for the L-111 (Linden) Sewer Separation, RDP Tributaries (Deer Creek) CSO Tunnel (MSD No. 12441) Project. This GDR does not attempt to interpret the data or provide conclusions regarding design recommendations or construction considerations for the project.

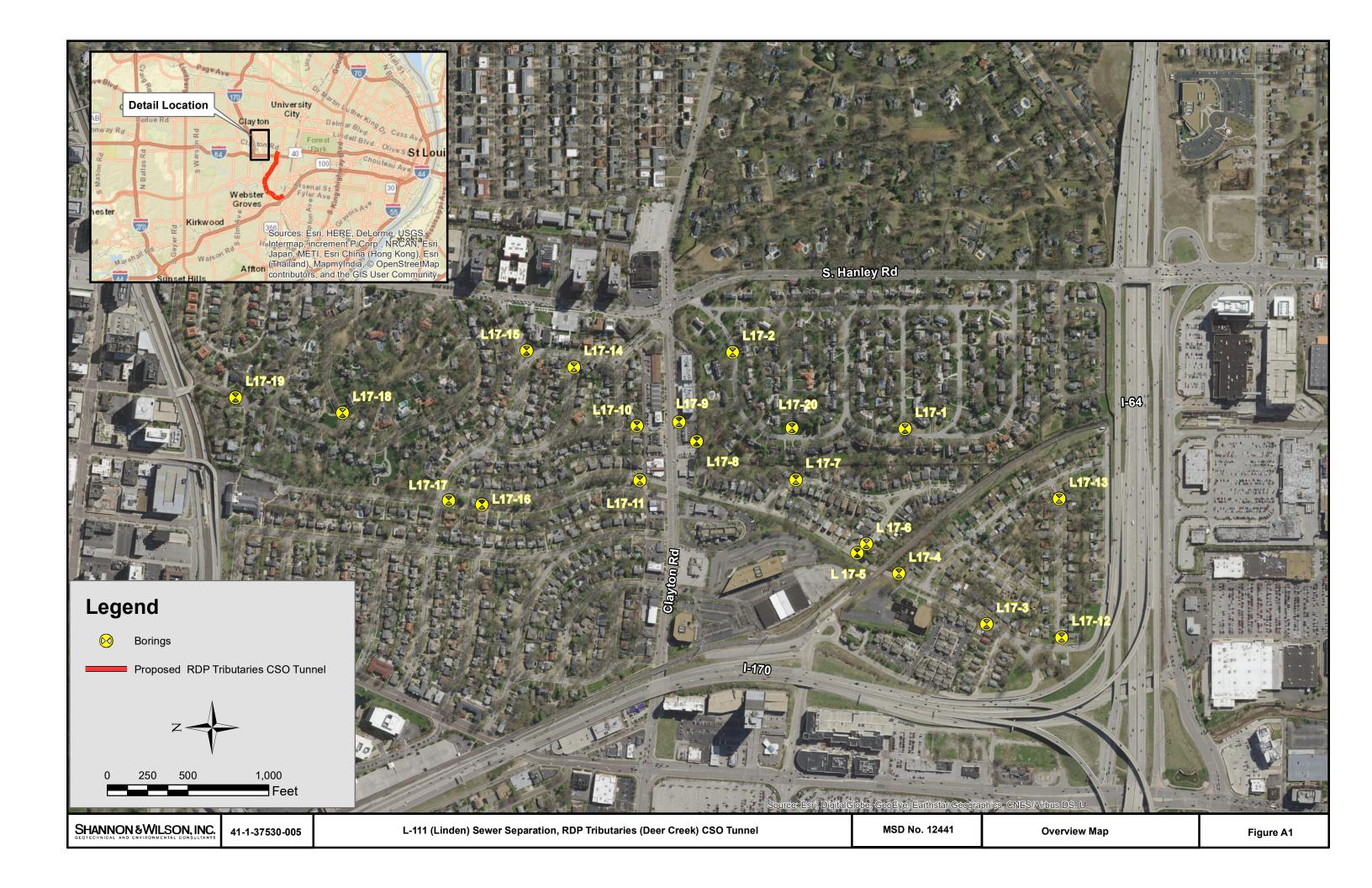
Site exploration and testing identifies actual surface and subsurface conditions at the specific locations taken, at the time obtained, and only to the depths penetrated. Discrete sampling and testing should not be relied upon to accurately reflect natural variations that exist between borehole locations. S&W has attempted to conduct the services reported herein in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions as this project.

The lines designating changes in soil and rock stratigraphy represent approximate boundaries. The actual interface or transition between materials may occur higher, lower, or more gradually

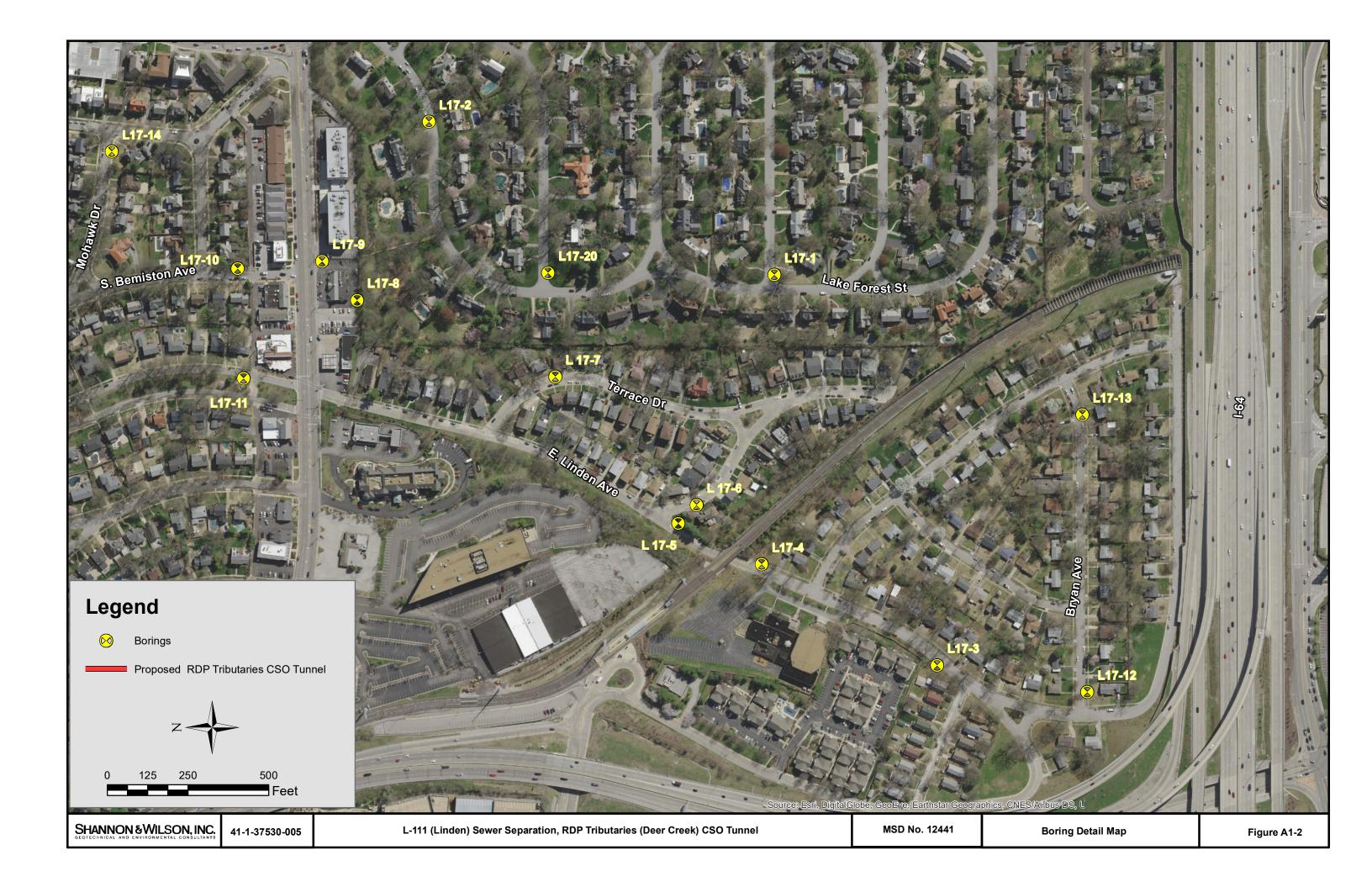
than indicated. Subsurface conditions may be affected over time by natural processes and events such as floods, earthquakes, groundwater fluctuations or human activities.

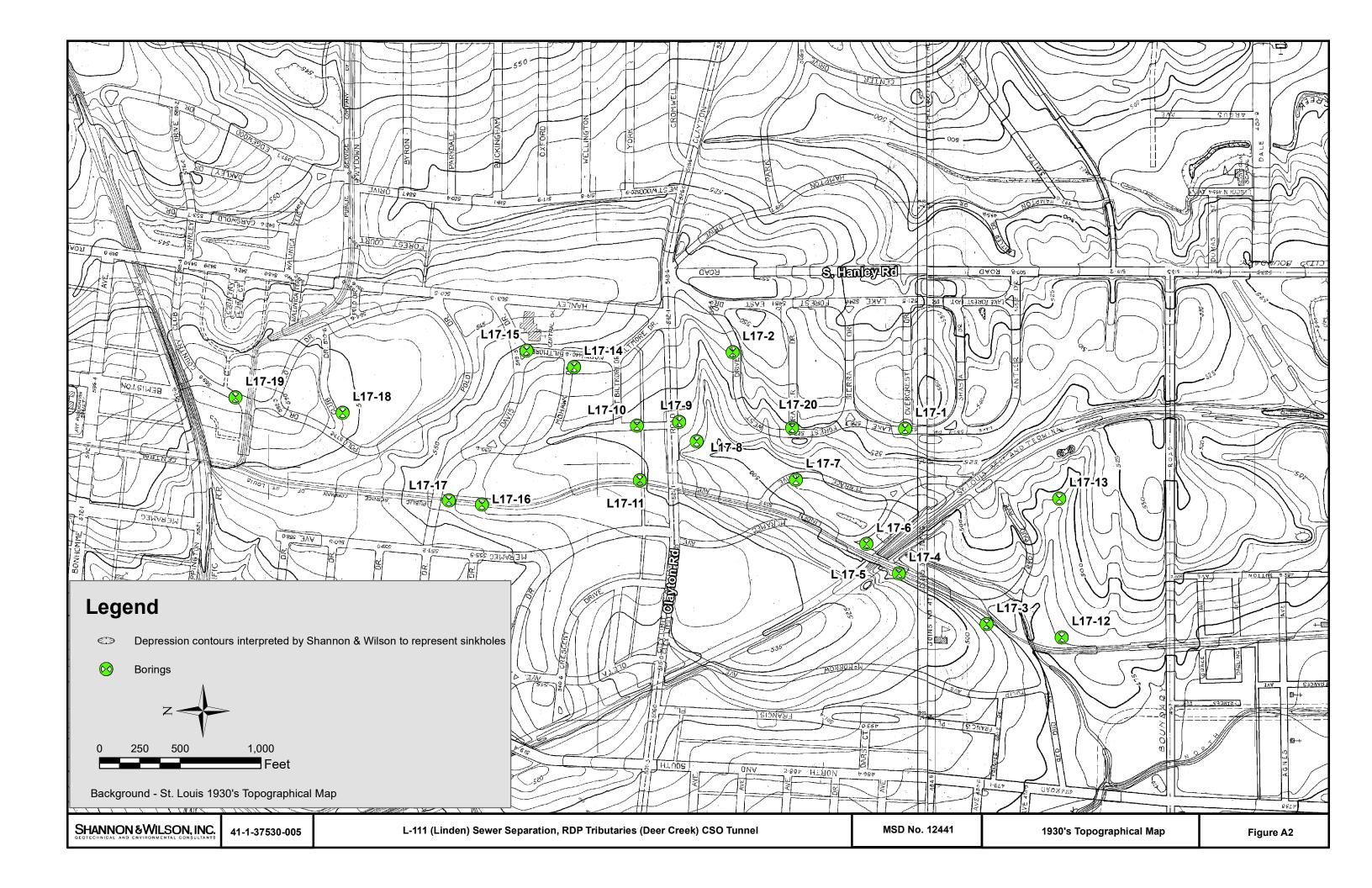
The work scope did not include environmental assessment or investigation for the presence of wetlands or hazardous or toxic material in the water, soil or air on, below or around the site.

SHANNON & WILSON, INC.



William B. Kremer, P.E. Senior Associate


VMC:WBK/tad


Vonmarie Martinez-Chaluisant, P.E. Geotechnical Professional IV

Appendix A Figures

Appendix B Soil Classification Criteria and Exploratory Borings

Soil logs presented in this GDR are a compilation of subsurface conditions and soil classifications determined from field and laboratory data as interpreted by the Geotechnical/Civil Engineer and/or Scientist. Observations, test results and measurements listed on the logs refer only to the identified interval or sample and only within the limits of the boring. Soil classifications are based on the Unified Soil Classification System (USCS) as provided in ASTM D2487 and visual-manual procedures as provided in ASTM D2488. Elements of the USCS criteria are given below. ASTM D2487 and ASTM D2488 should be referred to for additional criteria and information concerning the USCS.

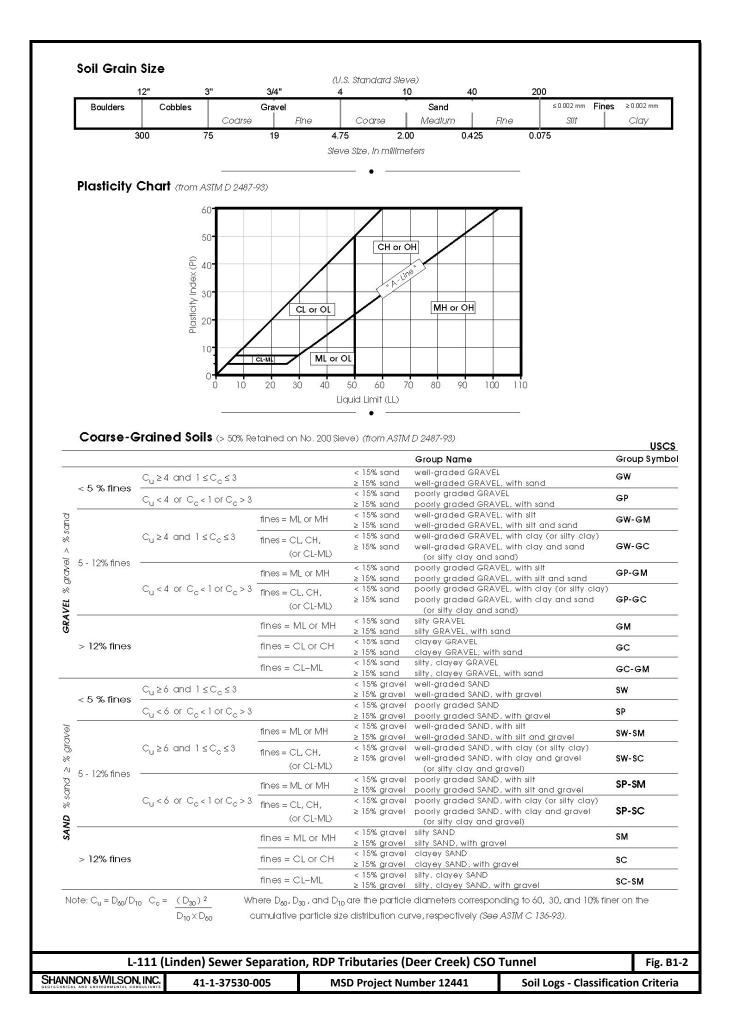
General Order of Classification Terms

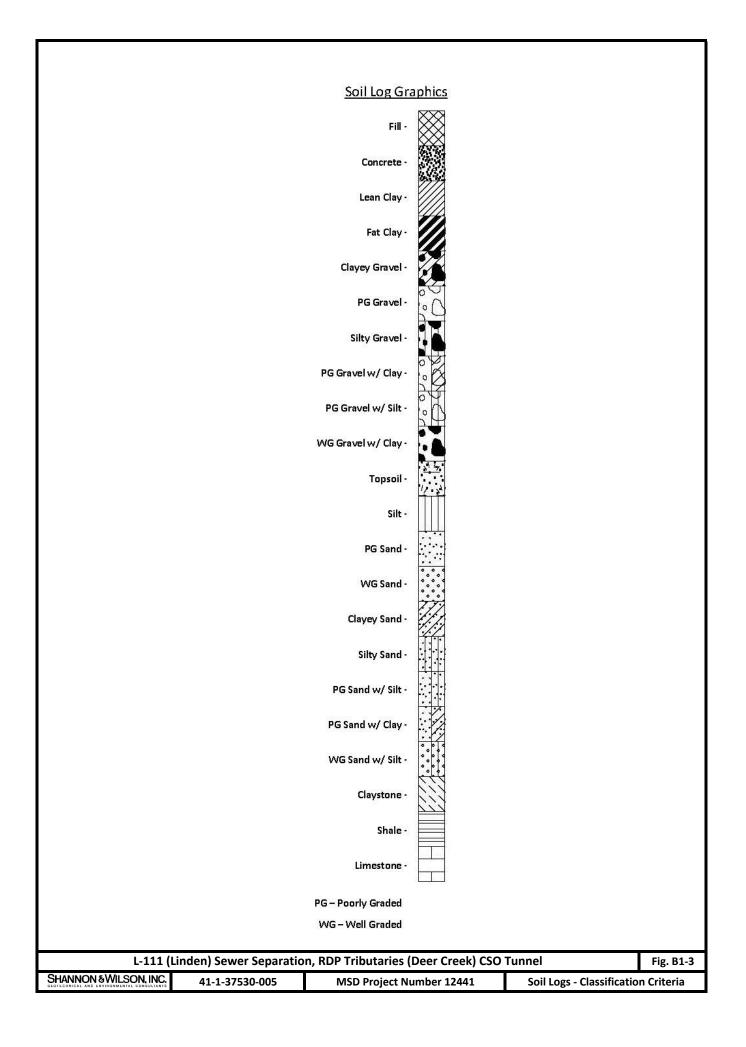
Relative density or consistency, color, soil constituents, moisture condition, structure, plasticity, gradation, grain shape, cementation, organics, odor, other; (Geologic Name: FILL, TILL, ALLUVIUM, etc.) (USCS group symbol)

> i.e. Medium stiff, dark gray, lean CLAY, trace fine sand; molst; laminated (<2 mm) with light gray slit, occasional slickensides; (GLACIOLACUSTRINE)(CL-ML),

Relative Density of Coarse-Grained Soils (Nonplastic Silt, Sand, and Gravel)

Relative Consistency of Fine-Grained Soils (Plastic Silt and Clav)


N, SPT	Relative	N, SPT	Shear	Unconfined	Relative
blows/foot	<u>Density</u>	<u>blows/foot</u>	<u>strenath, tsf (kPa)</u>	<u>strenath, tsf (kPa)</u>	<u>Consistency</u>
0-4	Very loose	<2	< 0.13 (<12)	< 0.25 (<24)	Very soft
4-10	Loose	2 - 4	0.13 - 0.25 (12-24)	0.25 - 0.5 (24-48)	Soft
10-30	Medlum dense	4 - 8	0.25 - 0.5 (24-48)	0.5 - 1 (48-96)	Medlum stlff
30-50	Dense	8 - 15	0.5 - 1 (48-96)	1 - 2 (96-192)	Stiff
over 50	Very dense	15 - 30	1 - 2 (96-192)	2 - 4 (192-383)	Very stiff
		over 30	> 2 (>192)	> 4 (>383)	Hard

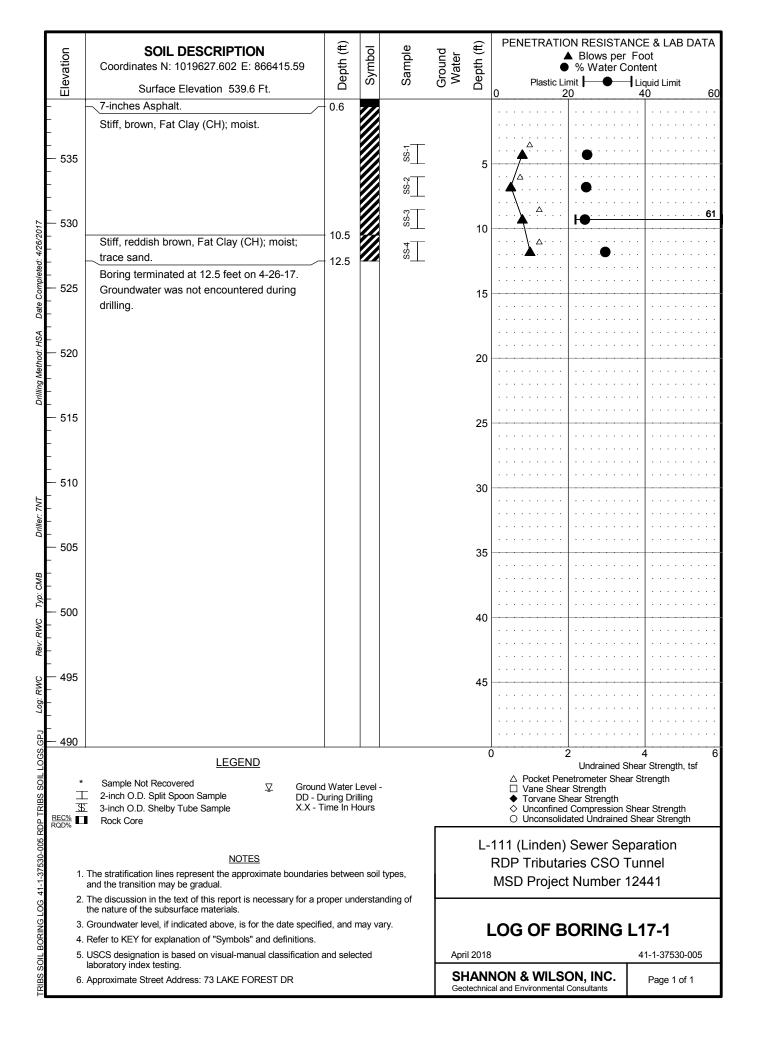

Standard Penetration Resistance (SPT or N value) is the sum of the blows required to drive a 2-inch OD by 1.375-inch ID (5 cm x 3.5 cm) split-spoon sampler 1 foot (30.5 cm) after seating 6 inches (15.2 cm) into undisturbed soil using a 140-pound (623 N) hammer free-falling 30 inches (76 cm) in accordance with ASTM D 1586-84. Driving is limited to 50 blows within any 6-inch interval. Samplers which have not driven the full 6-inch interval upon completing 50 blows (or 10 blows for 0 inches) are considered to have reached " split-spoon refusal ".

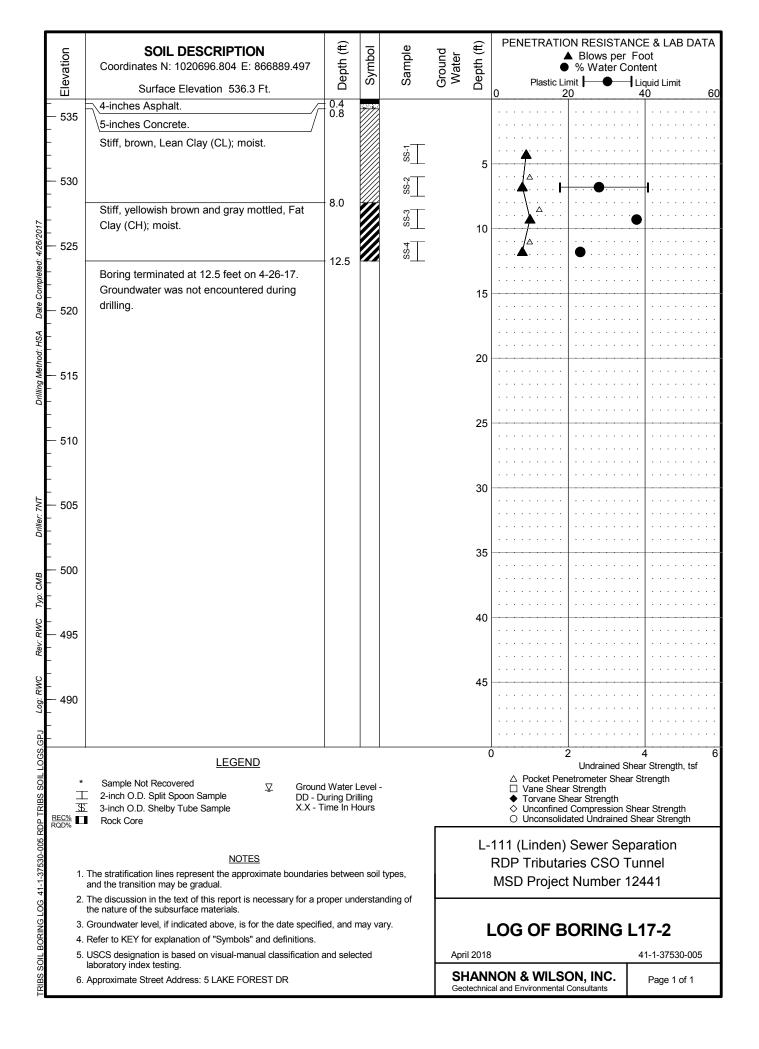
Terms and Definitions

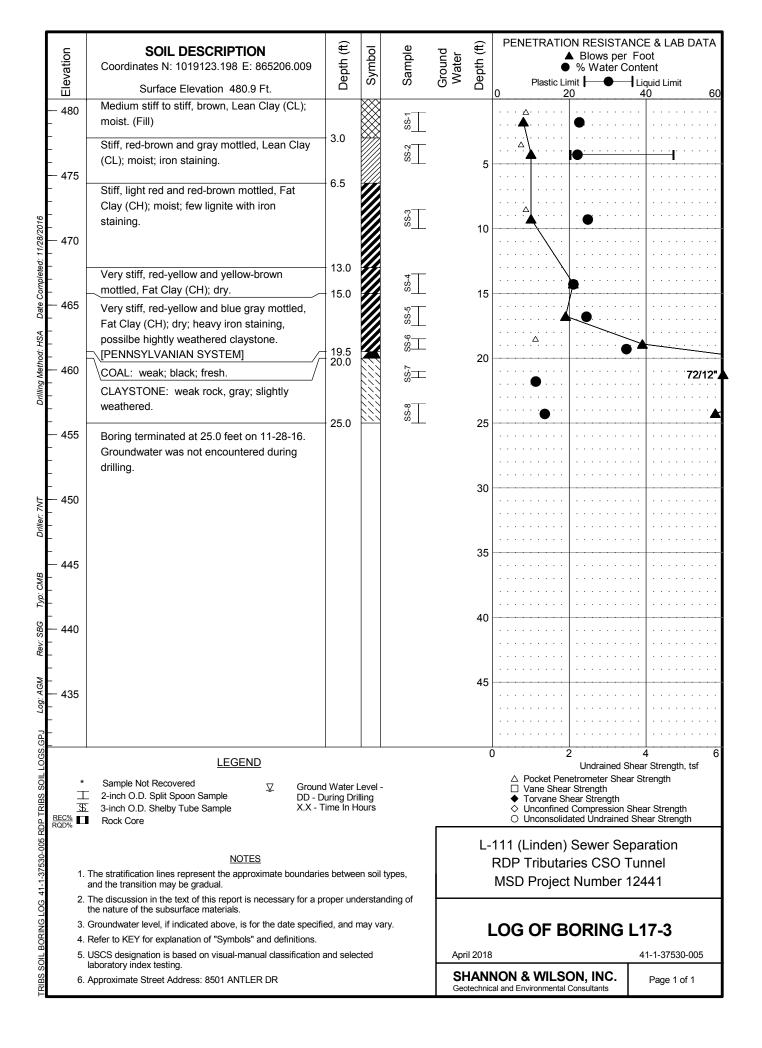
Structure	Criteria	Plasticity	Criteria
Partings	< 1/16" thickness (1.6 mm)	Nonplastic	Cannot roll 1/8-in. (3 mm) thread
Seam	1/16" -1/2" thickness (1.6 to 12.7 mm)	Low	Can barely roll thread and cannot form lump
_ayer	>1/2" thickness (12.7 mm)		when drier than plastic limit (PL)
Pocket	irregular inclusion < 1 per foot (30.5 cm)	Medium	Easy to roll thread. Need little rolling and
Occasional	≤ 1 inclusion or layer per foot (30.5 cm)		kneading to reach PL. Cannot re-roll thread
Frequent	> 1 inclusion or layer per foot (30.5 cm)		after PL reached. Lump crumbles when drier
Laminated	Alternating layers < 1/4" (6 mm) thick		than PL
Stratified	Alternating layers $\geq 1/4''$ (6 mm) thick	High	Need considerable rolling and kneading to
Lensed	Small pockets of different soils		reach PL. Can re-roll thread several times after
Fissured	Breaks easily along definite planes		PL reached. Lump can be formed without
Slickensided	Polished, glossy, striated fracture planes		crumbling when drier than PL
Blocky	Easily breaks into small angular lumps	Dilatancy	Criteria
Sheared	Disturbed texture, mix of strengths		
Homogeneous	Uniform color and appearance	None	No visible change in specimen.
Trace	Material comprises < 5% of sample	Slow	Water appears slowly on specimen surface
Few	Material comprises ≈ 5 to 10% of sample		when shaken, disappears slowly when squeezed
Little	Material comprises ≈ 15 to 25% of sample	Rapid	Water appears quickly on specimen surface
Some	Material comprises ≈ 30 to 45% of sample		when shaken, disappears quickly when squeeze
Mostly	Material comprises ≈ 50 to 100% of sample	Dry Strength	Criteria
Cementation	Criteria	None	Crumbles with handling
Weak	Crumbles with little finger pressure	Low	Crumbles with little finger pressure
Moderate	Breaks with considerable finger pressure	Medium	Breaks with considerable finger pressure
Strong	Will not crumble or break with finger pressure	High	Will not crumble or break with finger pressure.
Particle Angularity	Criteria		Will break between thumb and hard surface
Angular	Sharp edges and unpolished plane surfaces	Very high	Will not break between thumb and hard surface
Subangular	Similar to Angular but with rounded edges	Toughness	Criteria
Subrounded	Nearly plane sides with well-rounded edges	Low	Slight pressure required to roll thread near PL.
Rounded	Smoothly curved sides and no edges		Weak, soft thread and lump
Particle Shape	Criteria	Medium	Medium pressure required to roll thread near
Flat	Particles with width/thickness > 3		PL. Medium stiff thread and lump
Elongated	Particles with length/width > 3	High	Considerable pressure required to roll thread
Flat and elongated	Meets criteria for both flat and elongated		near PL. Very stiff thread and lump
Reaction with HCI	Criteria	Moisture Condition	Criteria
None	No visible reaction	Dry	Absence of moisture, dusty, dry to touch
Weak	Some reaction, bubbles form slowly	Moist	Damp but no visible water
Strong	Violent reaction, bubbles form immediately	Wet	Visible free water, usually soil below water table
	Construction of the second	44A1	Alama Iraa watal Yaaniik 2011 nanaw Mateli jable

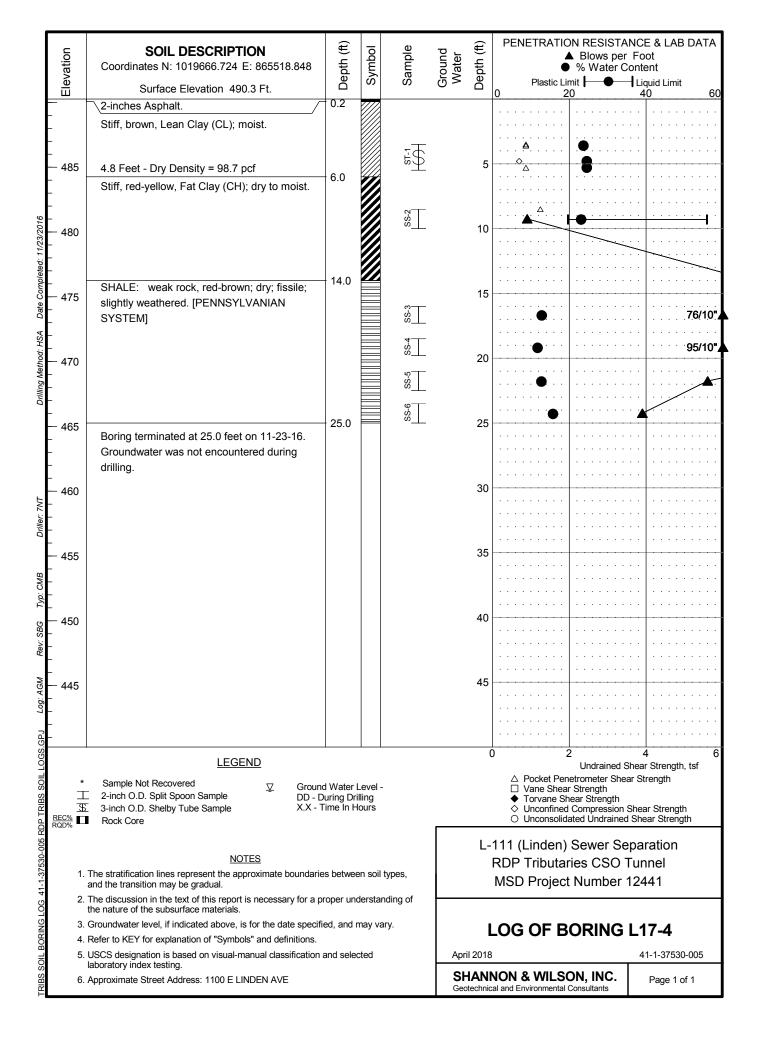
L-111 (Linden) Sewer Separation, RDP Tributaries (Deer Creek) CSO Tunnel					
SHANNON & WILSON, INC.		MSD Project Number 12441	Soil Logs - Classificatio	n Criteria	

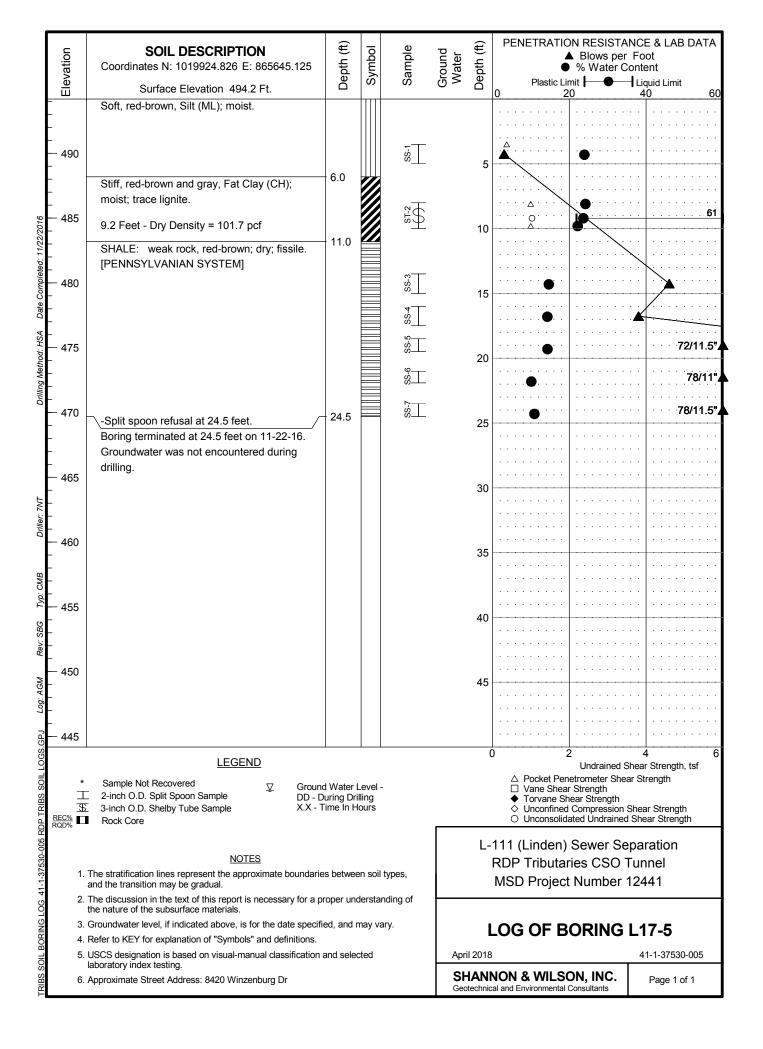
< 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 15 to 29% > No. 200 15 to 29% > No. 200 2 30% > No. 200 15 to 29% > No. 200 2 30% > No. 200 2 30% > No. 200 2 30% > No. 200 2 30% > No. 200 2 15% > No. 200 15 to 29% > No. 200	% sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel	< 15% gravel ≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel < 15% sand ≥ 15% gravel < 15% gravel < 15% gravel < 15% sand ≥ 15% sand < 15% sand < 15% sand < 15% sand	lean CLAY lean CLAY, with sand lean CLAY, with gravel sandy, lean CLAY sandy, lean CLAY gravelly, lean CLAY, with gravel gravelly, lean CLAY, with sand silty CLAY, with gravel sandy, silty CLAY, with gravel gravelly, silty CLAY, with gravel gravelly, silty CLAY, with gravel gravelly, silty CLAY, with sand SILT, with gravel sandy SILT SILT, with gravel sandy SILT gravelly CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT	CL-ML	
≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 15 to 29% > No. 200 2 30% > No. 200 ≤ 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 < 15% > No. 200	% sand < % gravel % sand ≥ % gravel % sand > % gravel % sand < % gravel % sand > % gravel % sand < % gravel	 ≥ 15% gravel < 15% sand ≥ 15% sand < <	lean CLAY, with gravel sandy, lean CLAY gravelly, lean CLAY, with gravel gravelly, lean CLAY, with sand silty CLAY silty CLAY, with sand silty CLAY, with gravel sandy, silty CLAY sandy, silty CLAY gravelly, silty CLAY gravelly, silty CLAY, with gravel gravelly, silty CLAY, with sand SILT SILT, with gravel sandy SILT sandy, SILT, with gravel gravelly SILT gravelly SILT gravelly SILT gravelly SILT, with sand organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT	CL-ML	
< 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 (15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 (15% > No. 200 (15% > No. 200	% sand ≥ % gravel % sand < % gravel % sand < % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel	 ≥ 15% gravel < 15% sand ≥ 15% sand < <	sandy, lean CLAY sandy, lean CLAY, with gravel gravelly, lean CLAY, with gravel gravelly, lean CLAY, with sand silty CLAY silty CLAY, with gravel sandy, silty CLAY, with gravel gravelly, silty CLAY, with gravel gravelly, silty CLAY, with sand SILT SILT, with gravel sandy, SILT sandy, SILT sandy, SILT gravelly SILT gravelly SILT gravelly SILT gravelly SILT gravelly SILT organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with gravel gravelly, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT	CL-ML	
< 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 (15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 (15% > No. 200 (15% > No. 200	% sand < % gravel % sand < % gravel % sand < % gravel % sand > % gravel % sand > % gravel % sand > % gravel % sand > % gravel % sand < % gravel	 ≥ 15% gravel < 15% sand ≥ 15% sand < <	sandy, lean CLAY, with gravel gravelly, lean CLAY, with gravel gravelly, lean CLAY, with sand silty CLAY, lean CLAY, with sand silty CLAY, with gravel sandy, silty CLAY andy, silty CLAY, with gravel gravelly, silty CLAY, with sand SILT SILT, with sand SILT, with sand SILT, with gravel sandy SILT gravelly CLAY, with sand organic CLAY, with gravel sandy, organic CLAY gravelly, organic CLAY, with gravel gravelly, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT	CL-ML	
< 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 (15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 (15% > No. 200 (15% > No. 200	<pre>% sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand < % gravel % sand < % gravel % sand < % gravel % sand ≥ % gravel % sand ≥ % gravel % sand < % gravel</pre>	 ≥ 15% sand < 15% gravel ≥ 15% gravel < 15% sand ≥ 15% gravel ≥ 15% gravel < 15% sand > < 15% sand < 	gravelly, lean CLAY, with sand silty CLAY silty CLAY, with sand silty CLAY, with gravel sandy, silty CLAY sandy, silty CLAY, with gravel gravelly, silty CLAY, with sand SILT siLT, with cLAY, with sand SILT, with gravel sandy SILT gravelly SILT, with gravel gravelly SILT gravelly SILT gravelly SILT, with sand organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT	ML	
15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 ≤ 15% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 ≥ 30% > No. 200 ≤ 15% > No. 200 < 15% > No. 200	<pre>% sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand < % gravel % sand < % gravel % sand < % gravel % sand ≥ % gravel % sand ≥ % gravel % sand < % gravel</pre>	< 15% gravel ≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel < 15% gravel < 15% sand ≥ 15% sand < 15% gravel < 15% gravel < 2 15% gravel < 3 15% sand < 3 15% sand	sility CLAY sility CLAY, with sand sility CLAY, with gravel sandy, sility CLAY sandy, sility CLAY gravelly, sility CLAY, with gravel gravelly, sility CLAY, with sand SILT SILT, with gravel sandy SILT gravelly SILT gravelly SILT gravelly SILT gravelly SILT, with gravel organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with gravel gravelly, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT	ML	
15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 ≤ 15% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 ≥ 30% > No. 200 ≤ 15% > No. 200 < 15% > No. 200	% sand < % gravel % sand ≥ % gravel % sand < % gravel % sand < % gravel % sand ≥ % gravel % sand ≥ % gravel % sand ≥ % gravel % sand ≥ % gravel % sand < % gravel	 ≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel ≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel 	silty CLAY, with sand silty CLAY, with gravel sandy, silty CLAY gravelly, silty CLAY, with gravel gravelly, silty CLAY gravelly, silty CLAY, with sand SILT SILT, with gravel sandy, SILT sandy, SILT, with gravel gravelly SILT gravelly SILT gravelly SILT organic CLAY, with sand organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY sandy, organic CLAY gravelly, organic CLAY gravelly, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT	ML	
≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 (15% > No. 200 2 30% > No. 200 ≥ 30% > No. 200 (15% > No. 200 ≥ 30% > No. 200 2 30% > No. 200 (15% > No. 200	% sand < % gravel % sand ≥ % gravel % sand < % gravel % sand < % gravel % sand ≥ % gravel % sand ≥ % gravel % sand ≥ % gravel % sand ≥ % gravel % sand < % gravel	 ≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel ≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel 	sandy, silty CLAY sandy, silty CLAY, with gravel gravely, silty CLAY, with gravel gravely, silty CLAY, with sand SILT SILT, with sand SILT, with gravel sandy SILT gravely SILT, with gravel gravely SILT gravely SILT gravely SILT gravely SILT organic CLAY, with sand organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY gravely, organic CLAY, with gravel gravely, organic CLAY, with sand organic SILT	ML	
< 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 (15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 (15% > No. 200 2 30% > No. 200 (15% > No. 200 (15% > No. 200	% sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel	 ≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel ≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel 	sandy, silty CLAY, with gravel gravelly, silty CLAY gravelly, silty CLAY gravelly, silty CLAY, with sand SILT SILT, with sand SILT, with gravel sandy, SILT, with gravel gravelly SILT gravelly SILT gravelly SILT, with sand organic CLAY organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY gravelly, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT	ML	
< 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 (15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 (15% > No. 200 2 30% > No. 200 (15% > No. 200 (15% > No. 200	% sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel	< 15% sand ≥ 15% sand < 15% gravel ≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel < 15% gravel < 15% gravel < 15% gravel < 15% gravel	gravelly, silty CLAY gravelly, silty CLAY, with sand SILT SILT, with sand SILT, with gravel sandy SILT sandy, SILT, with gravel gravelly SILT gravelly SILT gravelly SILT, with sand organic CLAY organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT		
15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 ≥ 30% > No. 200 ≤ 30% > No. 200 < 15% > No. 200	% sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel	 ≥ 15% sand < 15% gravel ≥ 15% gravel < 15% sand ≥ 15% sand <td>gravelly, silty CLAY, with sand SILT SILT, with sand SILT, with gravel sandy, SILT sandy, SILT, with gravel gravelly SILT gravelly SILT, with sand organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT</td><td></td>	gravelly, silty CLAY, with sand SILT SILT, with sand SILT, with gravel sandy, SILT sandy, SILT, with gravel gravelly SILT gravelly SILT, with sand organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT		
15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 ≥ 30% > No. 200 ≤ 30% > No. 200 < 15% > No. 200	% sand < % gravel % sand ≥ % gravel % sand < % gravel	≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel ≥ 15% gravel ≥ 15% sand	SILT, with sand SILT, with gravel sandy SILT gravely SILT, with gravel gravelly SILT gravelly SILT, with sand organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT		
≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 ≥ 30% > No. 200 ≥ 30% > No. 200 < 15% > No. 200	% sand < % gravel % sand ≥ % gravel % sand < % gravel	≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel ≥ 15% gravel ≥ 15% sand	SILT, with gravel sandy SILT sandy, SILT, with gravel gravelly SILT gravelly SILT gravelly SILT, with sand organic CLAY organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY gravelly, organic CLAY, with sand organic SILT		
< 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 < 15% > No. 200	% sand ≥ % gravel % sand < % gravel % sand < % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel	≥ 15% gravel < 15% sand ≥ 15% sand < 15% gravel ≥ 15% gravel ≥ 15% sand	sandy SILT sandy, SILT, with gravel gravelly SILT gravelly SILT, with sand organic CLAY organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT		
< 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 < 15% > No. 200	% sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel	< 15% sand ≥ 15% sand < 15% gravel ≥ 15% gravel < 15% sand	gravelly SILT gravelly SILT, with sand organic CLAY, with sand organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT		
< 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 2 30% > No. 200 < 15% > No. 200	% sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel	≥ 15% sand < 15% gravel ≥ 15% gravel < 15% sand	gravelly SILT, with sand organic CLAY organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY, with sand organic SILT		
15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200	% sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel	< 15% gravel ≥ 15% gravel < 15% sand	organic CLAY organic CLAY, with sand organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY gravelly, organic CLAY, with sand organic SLT		
15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200	% sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel	≥ 15% gravel < 15% sand	organic CLAY, with gravel sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY gravelly, organic CLAY, with sand organic SILT		
≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200	% sand ≥ % gravel % sand < % gravel % sand ≥ % gravel % sand < % gravel % sand ≥ % gravel	≥ 15% gravel < 15% sand	sandy, organic CLAY sandy, organic CLAY, with gravel gravelly, organic CLAY gravelly, organic CLAY, with sand organic SLT		
< 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200	% sand < % gravel <u>% sand ≥ % gravel</u> % sand < % gravel % sand ≥ % gravel	≥ 15% gravel < 15% sand	sandy, organic CLAY, with gravel gravelly, organic CLAY gravelly, organic CLAY, with sand organic SLT	 	
< 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200	% sand ≥ % gravel % sand < % gravel % sand ≥ % gravel	< 15% sand	gravelly, organic CLAY gravelly, organic CLAY, with sand organic SILT		
15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200	% sand ≥ % gravel % sand < % gravel % sand ≥ % gravel	≥ 15% sand	organic SILT	— oi	
15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200	% sand < % gravel % sand ≥ % gravel				
≥ 30% > No. 200 < 15% > No. 200	% sand < % gravel % sand ≥ % gravel		organic SILT, with sand		
< 15% > No. 200	n		organic SILT, with gravel		
< 15% > No. 200	n	< 15% gravel	sandy, organic SILT		
	% sand < % aravel	≥ 15% gravel < 15% sand	sandy, organic SILT, with gravel gravelly, organic SILT		
		≥ 15% sand	gravely, organic SILT, with sand		
15 to 29% > No. 200			fat CLAY		
	% sand ≥ % gravel		fat CLAY, with sand fat CLAY, with gravel		
	% sand < % gravel	< 15% gravel		СН	
≥ 30% > No. 200	% sand ≥ % gravel	≥ 15% gravel	sandy, fat CLAY, with gravel		
	% sand < % gravel	< 15% sand	gravelly, fat CLAY		
< 15% > No. 200	an a sananan an	≥ 15% sand	gravelly, fat CLAY, with sand elastic SILT		
	% sand ≥ % gravel		elastic SILT, with sand		
15 to 29% > No. 200 ≥ 30% > No. 200	% sand < % gravel	. 150	elastic SILT, with gravel		
	% sand ≥ % gravel	< 15% gravel ≥ 15% gravel	sandy, elastic SILT sandy, elastic SILT, with gravel	MH	
	Waand 2 % group!	< 15% sand	gravelly, elastic SILT		
	∞ sunu < % graver	≥ 15% sand	gravelly, elastic SILT, with sand		
	% sand > % aravel				
15 to 29% > No. 200	% sand < % gravel		organic CLAY, with gravel		
	25273 Dr. 16485 - 166	< 15% gravel	sandy, organic CLAY		
≥ 30% > No. 200	A BIOLO	≥ 15% gravel			
	% sand < % gravel				
< 15% > No. 200			organic SILT	ОН	
15 to 29% > No. 200	% sand ≥ % gravel		organic SILT, with sand		
	1070.	< 15% aravel			
> 100/ > N- 000	% sand ≥ % gravel	≥ 15% gravel	sandy, organic SILT, with gravel		
≥ 00% > INO, 200	% sand < % aravel	< 15% sand	gravelly, organic SILT		
	< 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200	≥ 30% > No. 200 < 15% > No. 200 15 to 29% > No. 200 ≥ 30% > No. 200 (15 to 29% > No. 200) (15 to 29% > No. 2	≥ 30% > No. 200 ≤ 15% gravel	≥ 30% > No. 200 × sand < % gravel × sand ≥ % gravel × sand	

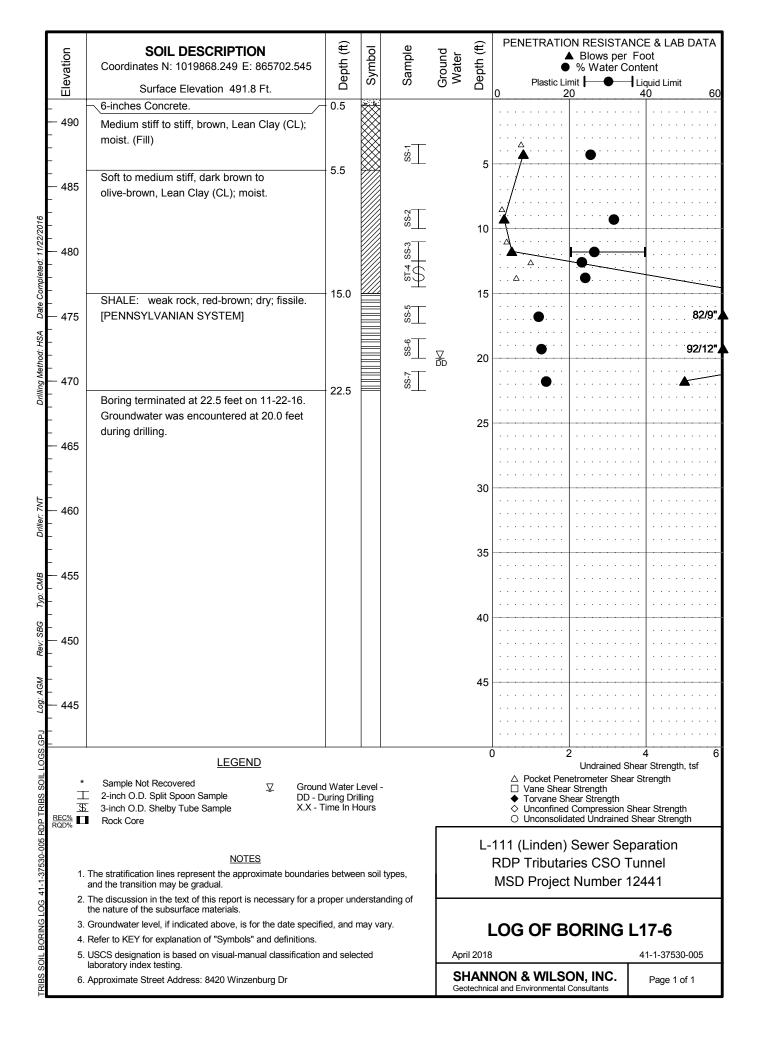

Coarse-Grained So	S (< 50% fines) (from ASTM D 2488-93)
-------------------	--

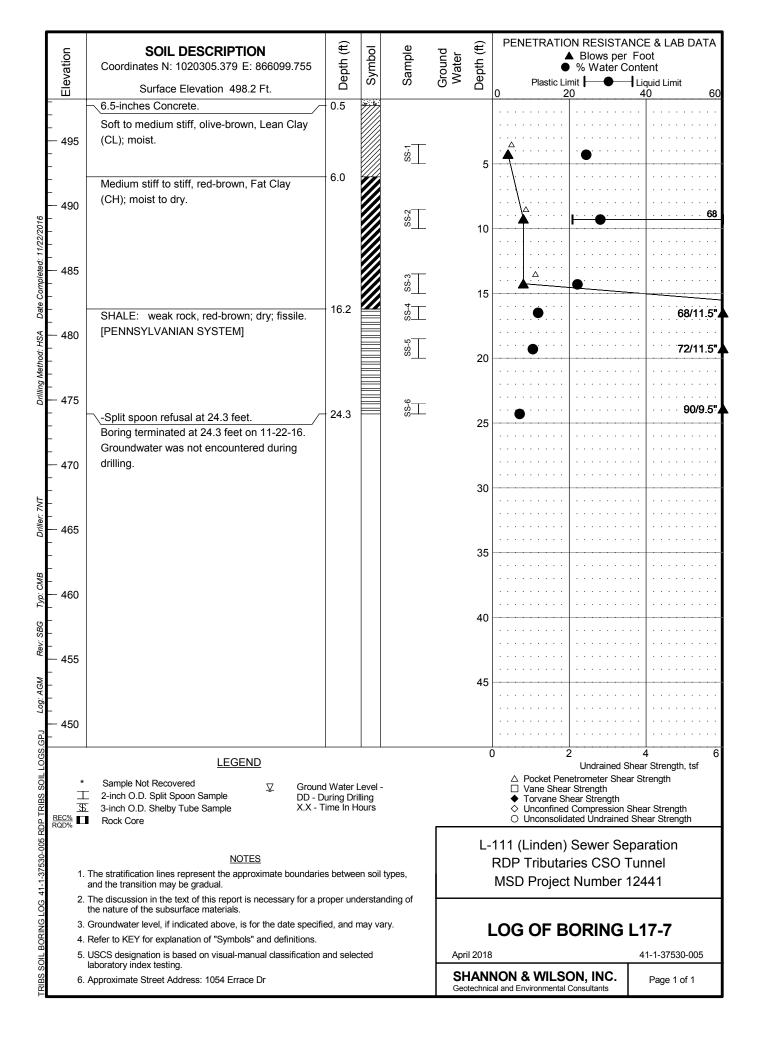

					Group Name	Group Symb
		A DAME AND A DESCRIPTION OF A DESCRIPTIO		< 15% sand well-graded GRAVEL		
	≤ 5 % fines	Well-graded		≥ 15% sand	well-graded GRAVEL, with sand	GW
	Z 2 % III 168	Poorly graded		< 15% sand	poorly graded GRAVEL	GP
				≥ 15% sand	poorly graded GRAVEL, with sand	
			fines = ML or MH	< 15% sand	well-graded GRAVEL, with silt	000 000
		Well-graded		≥ 15% sand	well-graded GRAVEL, with silt and sand	GW-GM
		weii-giuueu	fines = CL or CH	< 15% sand	well-graded GRAVEL, with clay	GW-GC
	10 % fines			≥ 15% sand	well-graded GRAVEL, with clay and sand	
	TO A II les		General Maller Mall	< 15% sand	poorly graded GRAVEL, with silt	GP-GM
		Doorly graded	fines = ML or MH	≥ 15% sand	poorly graded GRAVEL, with silt and sand	
		Poorly graded	fines = CL or CH	< 15% sand	poorly graded GRAVEL, with clay	GP-GC
				≥ 15% sand	poorly graded GRAVEL, with clay and sand	
_			territorio attente contractional an	< 15% sand	silty GRAVEL	GM
	≥ 15 % fines		fines = ML or MH	≥ 15% sand	silty GRAVEL, with sand	
			finan OL ar OL	< 15% sand	clayey GRAVEL	GC
			fines = CL or CH	≥ 15% sand	clayey GRAVEL, with sand	
	≤ 5 % fines			< 15% gravel	well-graded SAND	SW
		Well-graded		≥ 15% gravel	well-graded SAND, with gravel	
	Z 2 70 HILLES	Barrier Accession and		< 15% gravel	poorly graded SAND	SP
		Poorly graded		≥ 15% gravel	poorly graded SAND, with gravel	
		Well-graded	fines = ML or MH	< 15% gravel	well-graded SAND, with silt	SW-SM
				≥ 15% gravel	well-graded SAND, with silt and gravel	
			fines = CL or CH	< 15% gravel	well-graded SAND, with clay	sw-sc
	10 % fines			≥ 15% gravel	well-graded SAND, with clay and gravel	311-30
		Poorly graded	fines = ML or MH	< 15% gravel	poorly graded SAND, with silt	SP-SM
				≥ 15% gravel	poorly graded SAND, with silt and gravel	34-214
				< 15% gravel	poorly graded SAND, with clay	SP-SC
_			fines = CL or CH	≥ 15% gravel	poorly graded SAND, with clay and gravel	38-30
			fines = ML or MH	< 15% gravel	silty SAND	C M
	≥ 15 % fines		III I es = ML OF MH	≥ 15% gravel	silty SAND, with gravel	SM
			fines = CL or CH	< 15% gravel	clayey SAND	
			mes = CL OF CH	≥ 15% gravel	clayey SAND, with gravel	\$C

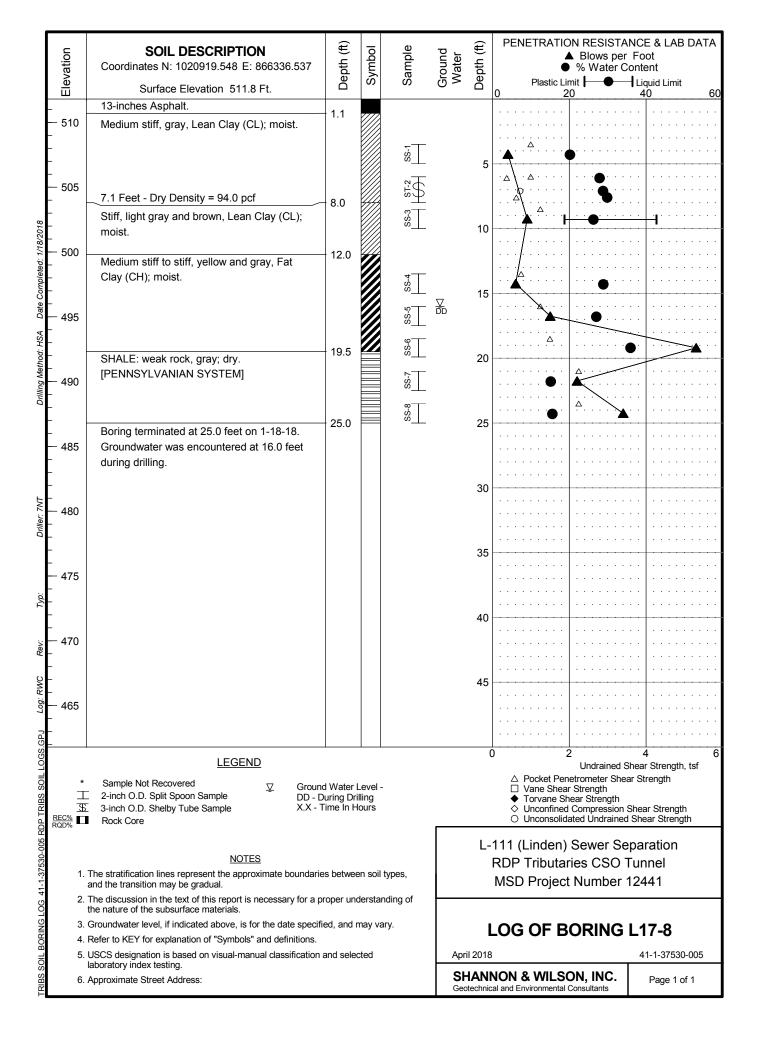

Inorganic and Organic Fine-Grained Soils (< 50% fines) (from ASIM D 2488-93)


			-Gruined Solis	(2 0010 11100) (110		Visual - Manua
					Group Name	Group Symbo
		<15% > No. 200			lean CLAY	
N 1		351 352 11 333	% sand ≥ % gravel		lean CLAY, with sand	24
Dilatancy	None to slow	15 to 25% > No. 200	% sand < % gravel		lean CLAY, with gravel	
Dry Strength	Medium to high		0/ see d > 0/ evenuel	< 15% gravel	sandy, lean CLAY	CL
Toughness			% sand ≥ % gravel	≥ 15% gravel	sandy, lean CLAY, with gravel	
	wealum	≥ 30% > No. 200	N	< 15% sand	gravelly, lean CLAY	A
			% sand < % gravel	≥ 15% sand	gravelly, lean CLAY, with sand	3.6
		<15% > No. 200	889 8 8 8 8 8		SILT	r
Dilatancy	Slow to Rapid	151 0501 11 000	% sand ≥ % gravel		SILT, with sand	
		15 to 25% > No. 200	% sand < % gravel		SILT, with gravel	
Dry Strength	None to low	19.000 (P)	0/	< 15% gravel	sandy SILT	ML
loughness	Lowor		% sand ≥ % gravel	≥ 15% gravel	sandy, SILT, with gravel	
-		≥ 30% > No. 200		< 15% sand	gravelly SILI	
	nonplastic		% sand < % gravel	≥ 15% sand	gravelly SILT, with sand	
		<15% > No. 200			fat CLAY	
	70		% sand ≥ % gravel		fat CLAY, with sand	
Dilatancy	None	15 to 25% > No. 200	% sand < % gravel		fat CLAY, with gravel	. L
Drv Strenath	High to very high	3 -	N2 N N2 N	< 15% gravel	sandy, fat CLAY	СН
		≥ 30% > No. 200	% sand ≥ % gravel	≥ 15% gravel	sandy, fat CLAY, with gravel	
loughness				< 15% sand	gravelly, fat CLAY	
			% sand < % gravel	≥ 15% sand	gravelly, fat CLAY, with sand	
	None to slow	<15% > No. 200			elastic SILT	
		15 to 25% > No. 200	% sand ≥ % gravel		elastic SILT, with sand	
Dilatancy			% sand < % gravel		elastic SILT, with gravel	
Drv Strenath	Low to medium Low to medium		% sand ≥ % gravel % sand < % gravel	< 15% gravel	sandy, elastic SILT	мн
				≥ 15% gravel	sandy, elastic SILT, with gravel	
Toughness		≥ 30% > No. 200		< 15% sand	gravelly, elastic SILT	
				≥ 15% sand	gravelly, elastic SILT, with sand	2
Dilatancy	Slow to Rapid	< 15% > No. 200			organic soil	
	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	any is used the research	% sand ≥ % gravel		organic soil, with sand	
Dry Strength	None to low	15 to 25% > No. 200	% sand < % gravel		organic soil, with gravel	
loughness	Lowor			< 15% gravel	sandy, organic soil	OL-OH
rough root	2010 07		% sand ≥ % gravel	≥ 15% gravel	sandy, organic soil, with gravel	
	nonplastic	≥ 30% > No. 200		< 15% sand	gravelly, organic soil	
Significant o	rganic content		% sand < % gravel	≥ 15% sand	gravelly, organic soil, with sand	
Soil comp decompos	osed primarily sition usually wi		ssue in various sta a dark brown to blac from fibrous to amorp	iges of k color,	PEAT	PT

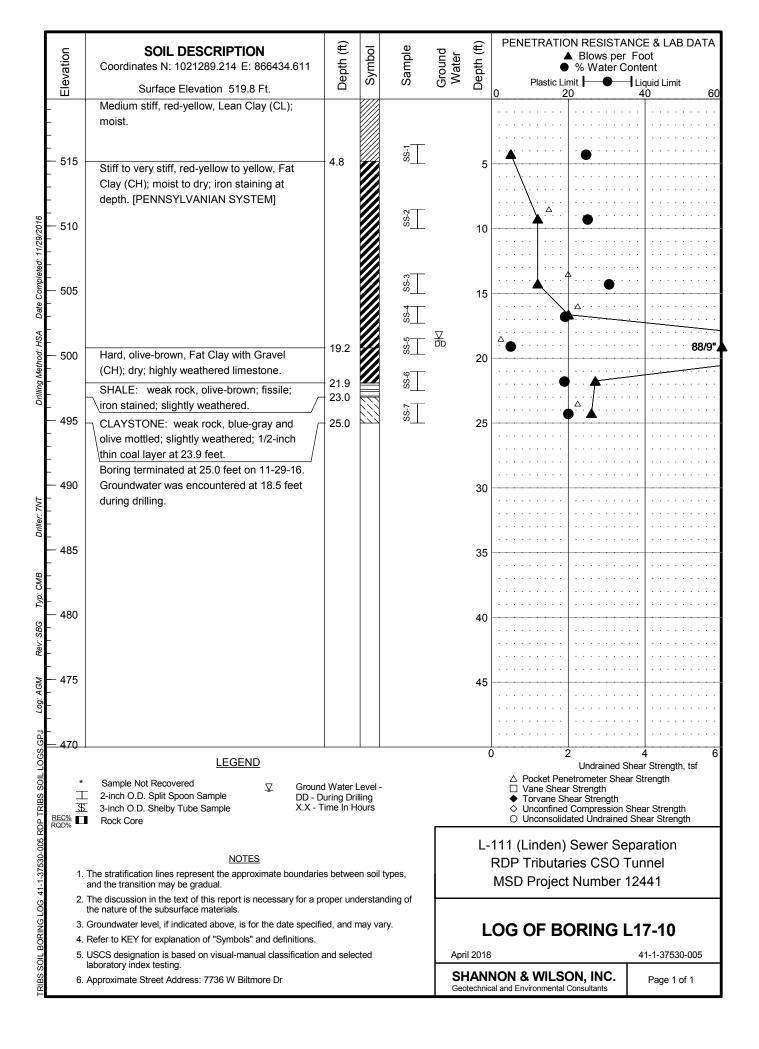

SHANNON & WILSON, INC.	MSD Project Number 12441	Soil Logs - Classification Criteria

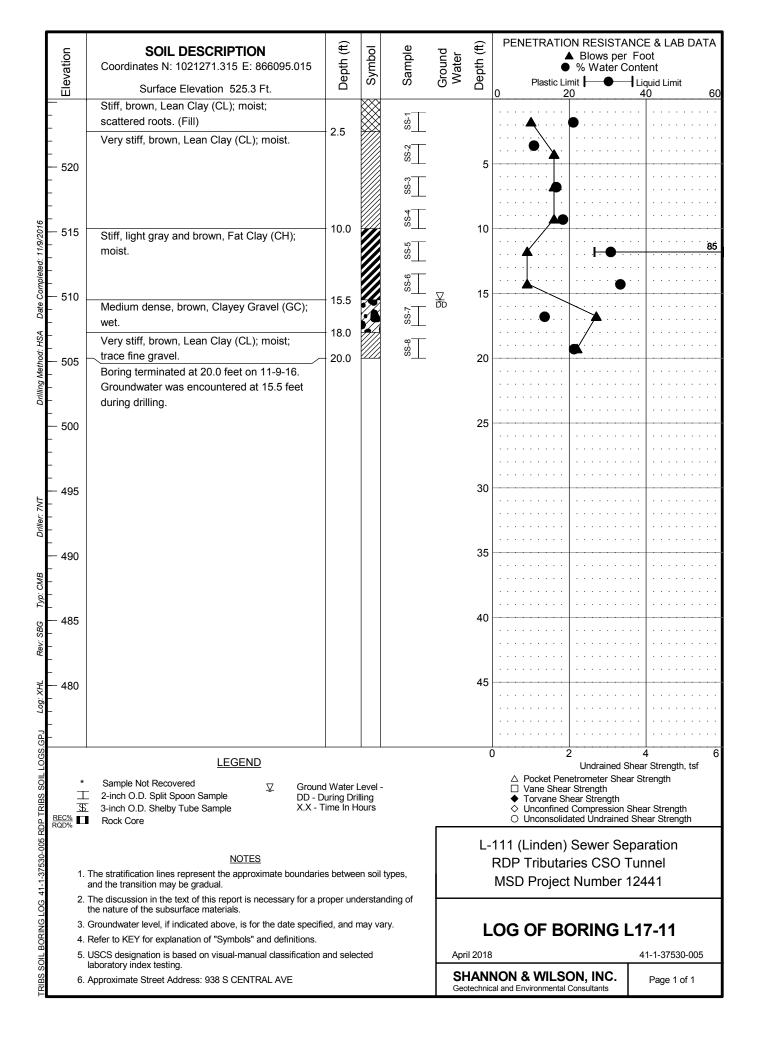


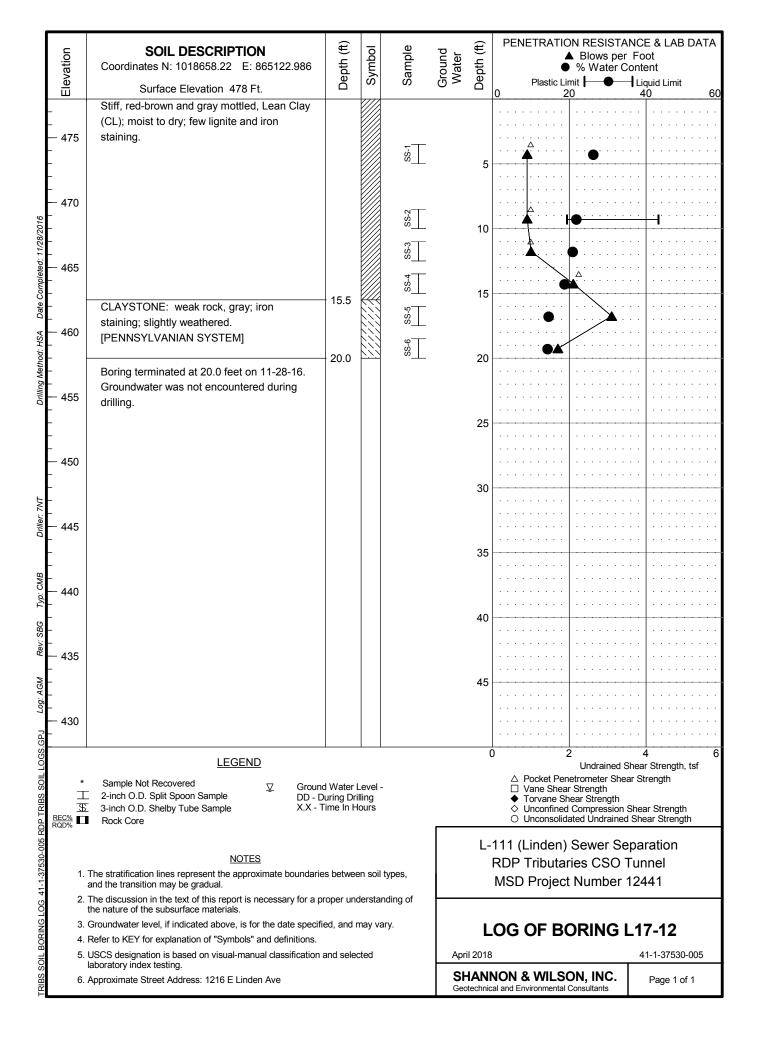


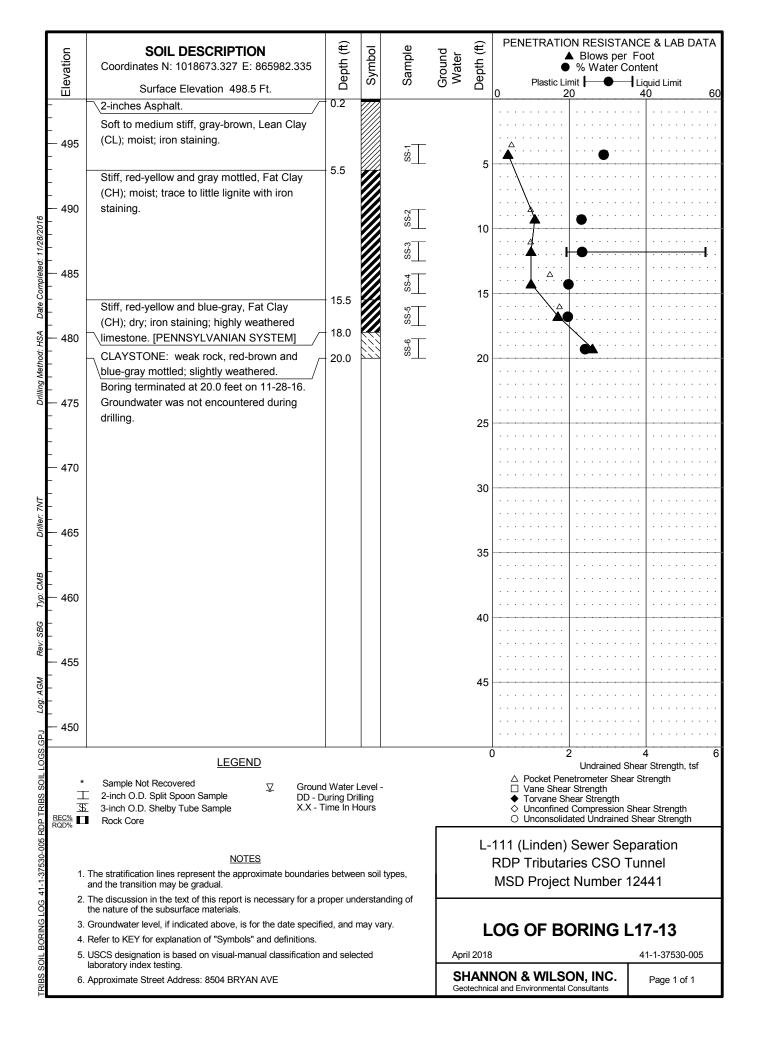


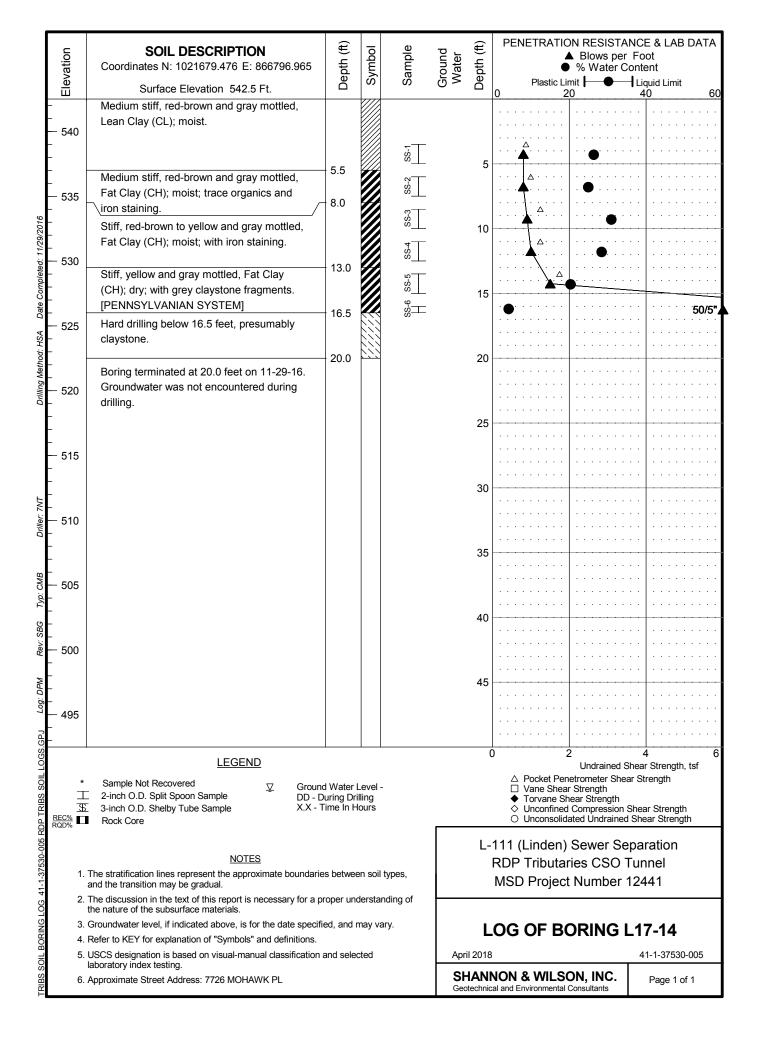


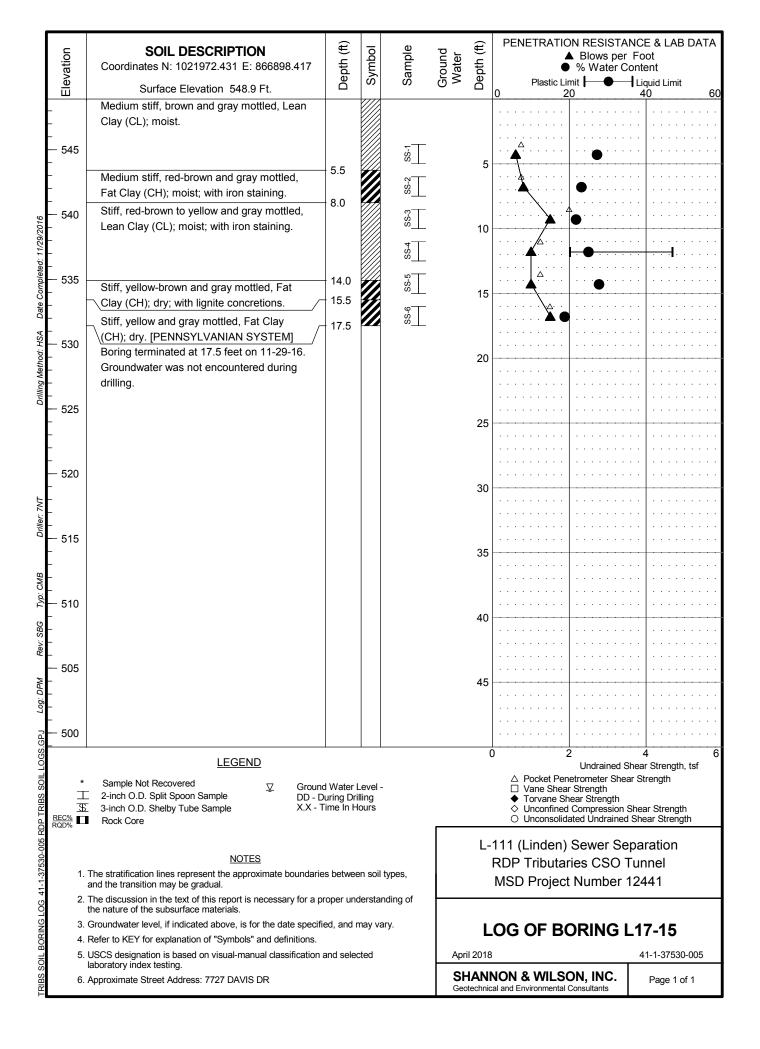


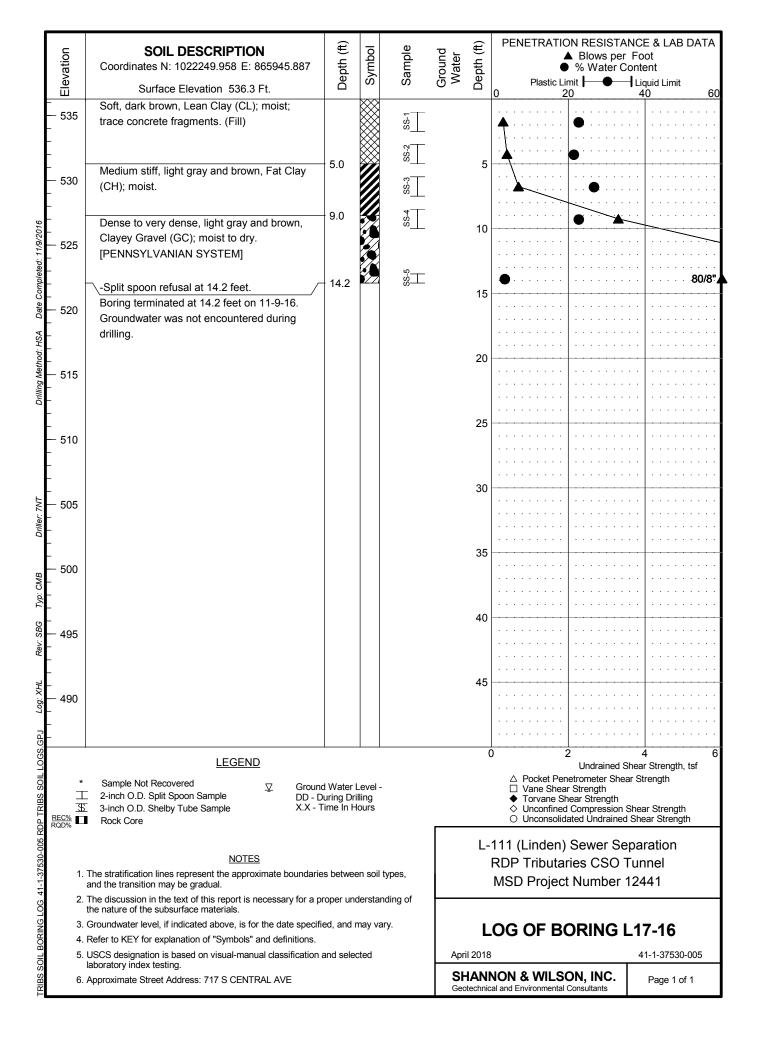


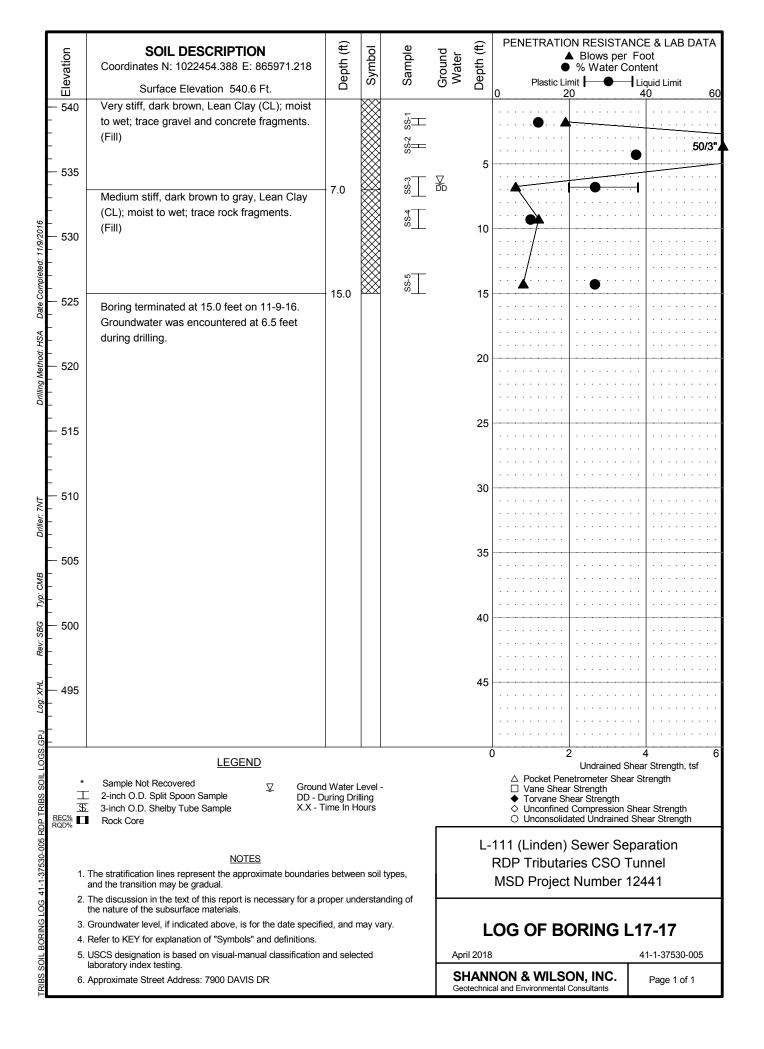


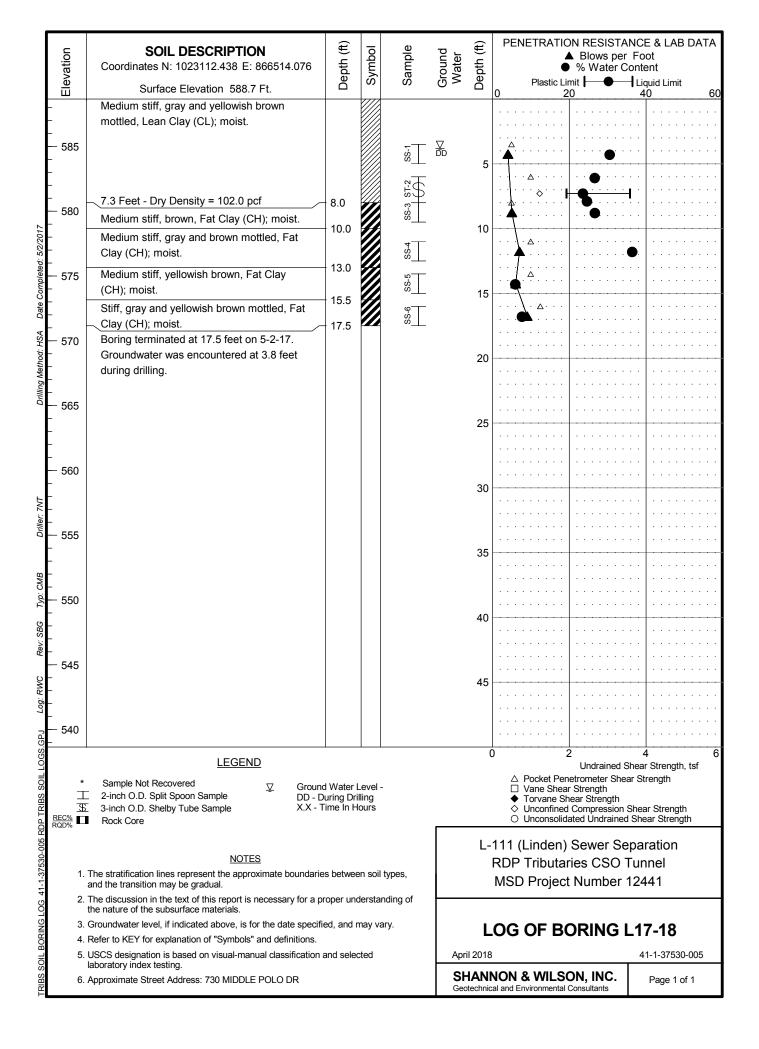


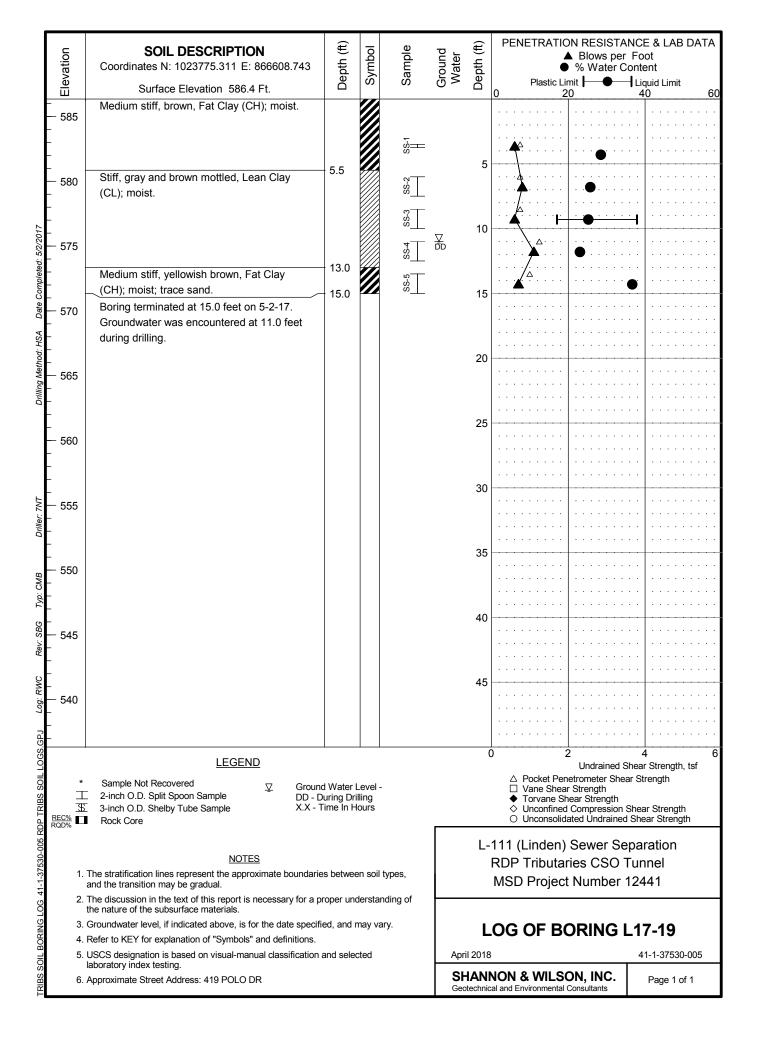


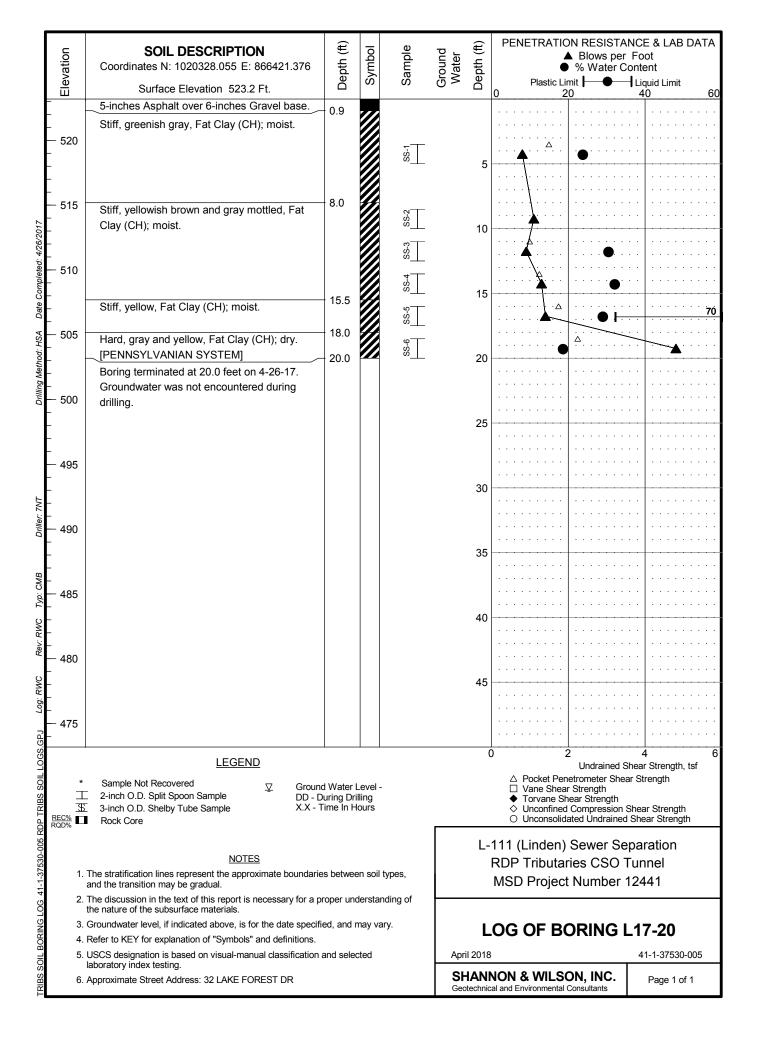












Appendix C Borings Backfill Reports and Restoration Photos This page intentionally left blank

MSD- Tribs 41-1-37530

MSD - TRIBS Borings

Boring Designation: $\frac{217 - 1}{Date: \frac{4/26/17}{Rwc}}$ Observer: $\frac{Rwc}{Rwc}$

Hole Volume

Diameter	Volume (per Foot)	
(in.)	Cubic Feet	Gallons
1.0	0.0055	0.04
2.0	0.0218	0.16
3.0	0.0491	0.37
3.78	0.0780	0.58
4.0	0.0873	0.65
5.0	0.1364	1.02
6.0	0.1963	1.47
7.0	0.2673	2.00
8.0	0.3491	2.61
9.0	0.4418	3.31

Backfill Grout Quantity Worksheet

Depth to water(ft): DR_{Y}

Quantity Components Placed (per batch)			tch)	
Date:	an an an Ar			
Portland Cement:				Pounds
Bentonite:				Pounds
Water:				Gallons
Batches:				

Quantity Components Placed (Total)		
Portland Cement:	1997 - 1995 1997 - 1995	Pounds
Powdered Bentonite:		Pounds
Water:		Gallons^
(^ gals. x 8.33lbs./gal)Water:	en e	Pounds

Open Hole Volume: Cu. Ft.

Specific Gravity		
Portland T1 Cement:	3.15	
Powdered Bentonite:	2.65	
Potable Water:	1.00	

1 cu.ft. H2O = 62.4 lbs. 1 gal. H2O = 8.33 lbs. 1 cu.ft. H2O = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = Pounds/(3.15 x 62.4) Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

JUHN GILBERT

7NT Crew

Chief:

BEATOMITE CHIPS DO 2.5
PLACELPILE TO 0.6
PLACE ASPHALT TO SUF
Notes: 21/4" En 18 A TU 18

Total Grout Volume Placed in Cubic Feet* Portland Cement:

Total:

Bentonite: ______ Water:

Completion Details:

11.0

BGS

75LB1

Boring:	LI	7-	1	

HDR

MSD - TRIBS Borings

Boring Designation: $\angle 17 - \angle$ Date: $\frac{4/26/17}{C}$ Observer: Rwc

Hole Volume

Diameter	Volume (per Foot)	
(in.)	Cubic Feet Gallon	
1.0	0.0055	0.04
2.0	0.0218	0.16
3.0	0.0491	0.37
3.78	0.0780	0.58
4.0	0.0873	0.65
(5.0)	0.1364	1.02
6.0	0.1963	1.47
7.0	0.2673	2.00
8.0	0.3491	2.61
9.0	0.4418	3.31

Open Hole Volume: _____ Cu. Ft.

Specific Gravity		
Portland T1 Cement:	3.15	
Powdered Bentonite:	2.65	
Potable Water:	1.00	

1 cu.ft. H2O = 62.4 lbs. 1 gal. H2O = 8.33 lbs. 1 cu.ft. H2O = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = Pounds/(3.15 x 62.4) Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

7NT Crew

Chief:

Misc. Calcs:

Backfill Grout Quantity Worksheet

Depth to water(ft): DR >

Quantity Components Placed (per batch)			
Date:			
Portland Cement:			Pounds
Bentonite:			Pounds
Water:			Gallons
Batches:	an a	anna Artain An Art	

Quantity Components Placed (Total)		
Portland Cement:		Pounds
Powdered Bentonite:		Pounds
Water:		Gallons^
(^ gals. x 8.33lbs./gal)Water:		Pounds

Total Grout Volume Placed in Cubic Feet*
Portland Cement:
Bentonite:
Water:

Total:

Completion Details:	PLACE
75LBS BENDNIFE	CLAPS ID 3 BUS
RALL GRAVEL TO O	18 B65
PLACE ASPHALT TO	SURME
Notes: 21/4" In Its	A TO 11.0 BGS

Boring: レノアー こ

1

Placed (ner hetch)

Shannon & Wilson, Inc.

Hole Volume

(in.) 1.0

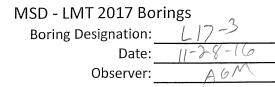
2.0

3.0

3.78

4.0

5.0


6.0

7.0

8.0

9.0

MSD- LMT 41-1-37530

Volume (per Foot)

Gallons

0.04

0.16

0.58

0.65

1.47

2.00

2.61

3.31

4.61

Cu. Ft.

Cubic Feet

0.0055

0.0218

0.0491

0.0780

0.0873

0.1364

0.2673

0.3491

0.4418

Open Hole Volume:

Backfill Grout Quantity Worksheet

Depth to water(ft):

Quantity Components Placed (per batch)					
Date:	11-28				
Portland Cement:	47			Pounds	
Bentonite:	25			Pounds	
Water:	37			Gallons	
Batches:					
Quantity Components Placed (Total)					
Portland Cement:			47	Pounds	
Powdered Bentonite:			25	Pounds	

Water:

^ gals. x 8.33lbs./gal)Water:

208.21

Gallons^

Pounds

Specific Gravity Total Grout Volume Placed in Cubic Feet* Portland T1 Cement: Portland Cement: 0.239 3.15 Bentonite: **Powdered Bentonite:** 2.65 0.15 Potable Water: 1.00 Water: .0 4.939 329 Total: 1 cu.ft. H2O = 62.4 lbs. 1 gal. H20 = 8.33 lbs. 1 cu.ft. H20 = 7.48 gals. Completion Details: will place soil plug of *To compute vol.(cu.ft.) from weight Bentonite Volume= Pounds/(3.15 x 62.4) $\sqrt{500}$ Water Volume= Pounds/(2.65 x 62.4) $\sqrt{500}$ Water Volume= pounds/(1.0 x 62.4) Notes: 2 7 Gallons of 9 rout **7NT** Crew Vemagnina Dale Meyer Chief: Misc. Calcs: Boring: L17-3

Diameter

(in.)

1.0

2.0

3.0

3.78

4.0

5.0

6.0

7.0

8.0

9.0

MSD - LMT 2017 Borings

Boring Designation: <u>L17-4</u> Date: <u>11-23-16</u> Observer: AGM

Volume (per Foot)

Gallons

0.04

0.16

0.37

0.58

0.65

1.02

1.47

2.00

2.61

3.31

Cubic Feet

0.0055

0.0218

0.0491

0.0780

0.0873

0.1364

0.1963

0.2673

0.3491

0.4418

Backfill Grout Quantity Worksheet

Depth to water(ft):

Quantity ComponentsPlaced (per batch)Date://-23-/2Portland Cement:9494PoundsBentonite:16Water:30Batches:1

Quantity Components Placed (Total)				
Portland Cement:	94	Pounds		
Powdered Bentonite:	16	Pounds		
Water:	30	Gallons^		
(^ gals. x 8.33lbs./gal)Water:	250	Pounds		

Total Grout Volume Placed in Cubic Feet* Portland Cement: の。4 フタ

Total:

hole

-left

Notes:

onco/

Completion Details:

Bentonite: 0.092

Water: 4, OO

4.581

about sets

6 mut

Finish

6

gravel + aspha

back !!

below grade

Open Hole Volume: 4.91 Cu. Ft.

Specific Gravity				
Portland T1 Cement:	3.15			
Powdered Bentonite:	2.65			
Potable Water:	1.00			

1 cu.ft. H2O = 62.4 lbs. 1 gal. H2O = 8.33 lbs. 1 cu.ft. H2O = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = Pounds/(3.15 x 62.4) =116,56 Bentonite Volume= Pounds/(2.65 x 62.4) =1,55.36 Water Volume= pounds/(1.0 x 62.4) =63.9

Dale Meyer

7NT Crew

Chief:

Misc. Calcs:	25'X	0.	1963	f+ 3	11	4,91	f+3	
--------------	------	----	------	------	----	------	-----	--

Boring: _____17- 4

(in.)

1.0

2.0

3.0 3.78

4.0

5.0

6.0

7.0

8.0

9.0

MSD - LMT 2017 Borings

0.0055

0.0218

0.0491

0.0780

0.0873

0.1364

0.1963

0.2673

0.3491

0.4418

Boring Designation: L17-5Date: 1/-22-16Observer:

0.04

0.16

0.37

0.58

0.65

1.02

1.47

2.00

2.61

3.31

Volume (per Foot) Cubic Feet Gallons

Backfill Grout Quantity Worksheet

Depth to water(ft):

Quantity Components Placed (per batch)						
Date:	11-22-6	•				
Portland Cement:	94			Pounds		
Bentonite:	16			Pounds		
Water:	30			Gallons		
Batches:	1					

Quantity Components Placed (Total)				
Portland Cement:	94	Pounds		
Powdered Bentonite:	16	Pounds		
Water:	30	Gallons^		
(^ gals. x 8.33lbs./gal)Water:	250	Pounds		

0.097

4.00%

4.581

Total Grout Volume Placed in Cubic Feet*

Portland Cement: 0.478

Water:

Total:

Bentonite:

Open Hole Volume: 4,7/ Cu. Ft.

Specific Gravity				
Portland T1 Cement:	3.15			
Powdered Bentonite:	2.65			
Potable Water:	1.00			

1 cu.ft. H2O = 62.4 lbs. 1 gal. H20 = 8.33 lbs. 1 cu.ft. H20 = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = $Pounds/(3.15 \times 62.4)$ Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

7NT Crew

Chief:

Misc. Calcs: 25'x 0.1963' = 4.91 ft?

Dale Meyer

Completion Details: finished back filling in of soi 11-23-15 0100 Notes: grout to within . Jof ground Surface, backfilled

Boring: L17-5

MSD-LMT 41-1-37530

MSD - LMT 2017 Borings

Boring Designation: L 17-6 Date: 11-22-16 Observer: AGM

Backfill Grout Quantity Worksheet

Depth to water(ft): ~ 18

Hole Volun	ne		_	Quantity Comp	ponents	Placed	l (per ba	itch)
Diameter	Volume (p	er Foot)]	Date:	11-22-16			
(in.)	Cubic Feet	Gallons		Portland Cement:	94			Pounds
1.0	0.0055	0.04		Bentonite:	16			Pounds
2.0	0.0218	0.16	1	Water:	RE		-	Gallons
3.0	0.0491	0.37		Batches:	1			
3.78	0.0780	0.58						
4.0	0.0873	0.65		Quantity Cor	mponer	nts Plac	ed (Tota	al)
5.0	0.1364	1.02		Portland C	ement:		94	Pounds
6.0	0.1963	1.47		Powdered Ber	tonite:		16	Pounds
7.0	0.2673	2.00			Water:		25	Gallons^
8.0	0.3491	2.61		(^ gals. x 8.33lbs./gal)Water:		208	Pounds
9.0	0.4418	3.31		·				
Open Ho	ole Volume:	4.42	Cu. Ft.					
Sp	ecific Gravit	У		Total Grout Volume I	Placed in	n Cubic	Feet*	
Portland	T1 Cement:	3.15		Portland Cement:	0.4			
Powdered	Bentonite:	2.65		Bentonite:				
Pota	able Water:	1.00		Water:	3.	<u>333</u>		
1 cu.ft. H2(O = 62.4 lbs.	an a		Total:	3	.90	8	
1 gal. H20 =	= 8.33 lbs.					-		
1 cu.ft. H20) = 7.48 gals.			Completion Details:				
•	avouled to within 23'				231			
*To compu	To compute vol.(cu.ft.) from weight of surface, grave) placed							
Cement Vo	lume = Pour	nds/(3.15 >	(62.4)	from 6'bas. to 6" bas.			93.	

Cement Volum Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

7NT Crew

Chief:

Misc. Calcs: 22.5' x 0.1963 = 4.42 ft3

Dale Meyer

Boring: _ L-17-6

settled

a round

Surface

Notes:

blacked coherete - 6"

on 11-23-16

a vout had HU to 6' below

MSD - LMT 2017 Borings Boring Designation: <u>L17-7</u> Date: <u>11-22-16</u> Observer: <u>A.G.M</u>

Backfill Grout Quantity Worksheet

Depth to water(ft):

Hole	Volume

Diameter	Volume (per Foot)			
(in.)	Cubic Feet	Gallons		
1.0	0.0055	0.04		
2.0	0.0218	0.16		
3.0	0.0491	0.37		
3.78	0.0780	0.58		
4.0	0.0873	0.65		
5.0	0.1364	1.02		
6.0	0.1963	1.47		
7.0	0.2673	2.00		
8.0	0.3491	2.61		
9.0	0.4418	3.31		

Quantity Components Placed (per batch)					
Date:	11-22-1	دگھر			
Portland Cement:	94			Pounds	
Bentonite:	16			Pounds	
Water:	30		-	Gallons	
Batches:)				

Quantity Components Placed (Total)				
Portland Cement:	94	Pounds		
Powdered Bentonite:	16	Pounds		
Water:	30	Gallons^		
(^ gals. x 8.33lbs./gal)Water:	250	Pounds		

Total Grout Volume Placed in Cubic Feet*

Portland Cement: 0,478

Open Hole Volume: 4.91 Cu. Ft.

Specific Gravity	
Portland T1 Cement:	3.15
Powdered Bentonite:	2.65
Potable Water:	1.00

1 cu.ft. H2O = 62.4 lbs. 1 gal. H2O = 8.33 lbs. 1 cu.ft. H2O = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = Pounds/(3.15 x 62.4) Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

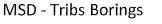
7NT Crew

Chief:

Misc. Calcs: 25×0.1963 =4.91

Dale Meyer

0.097 Bentonite: Water: 4.006 4.581 Total: Completion Details: finished backfilling hole conducte


Notes:

back Silled grout to within 6" of top of ground

Boring: LIZ-7

MSD-Tribs

41-1-37530

Boring Designation: <u>27-8</u> Date: <u>1/19/18</u> Observer:

Depth to water(ft): 9, g

The second	Contraction of the contract of the second states	and an		
Quantity Components Placed (per batch)				
Date:				
Portland Cement:				Pounds
Bentonite:				Pounds
Water:				Gallons
Batches:				
Quantity Components Placed (Total)				
Portland C	ement:			Pounds
Powdered Bentonite:			-	Pounds
Water:			-	Gallons^
(^ gals.x8.33lbs./gal)	Water:			Pounds

Total Grout Volume I	Placed in Cubic Feet*
Portland Cement:	
Bentonite:	······································
Water:	
Total:	

Low-Mobility Bac	kfill (lbs	/linear	foot of l	ooring)	
Hole Diameter(in.):	4	6	8	10	
Bentonite chips:	6	14	24	37.5	
Pea gravel:	9.7	22	39	-	
Notes: Bolt Z3	en er				
PLACE 3 SACKS	C150	LBS)	136-1.	or ister	C),
N 3'BGS.	PLA	18 C	GAN	150 10	1,1
PLACE ASPA	sur	10	SURP	HUE	
121126 110111		10		" I Carl Brager	

Hole Volume

noie volun		
Diameter	Volume (per Foot)	
(in.)	Cubic Feet	Gallons
2.0	0.0218	0.16
3.0	0.0491	0.37
3,8	0.078	0.58
(4.0	0.0873	0.65
5.0	0.1364	1.02
6.0	0.1963	1.47
7.0	0.2673	2.00
8.0	0.3491	2.61
1. It our thank		

4" DIA HOLE Hole Volume(Ft³): 2.2

Specific Gravit	ty
Portland T1 Cement:	3.15
Powdered Bentonite:	2.65
Potable Water:	1.00

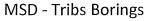
1 cu.ft. H2O = 62.4 lbs.	-
1 gal. H20 = 8.33 lbs.	
1 cu.ft. H20 = 7.48 gals.	

*Compute volume (Ft³) from weight Cement = Pounds/ (3.15×62.4) Bentonite = Pounds/(2.65 x 62.4) Water = $pounds/(1.0 \times 62.4)$

7NT Chief: DRE MEYER

Misc. Calcs:

Backfill Quantity Worksheet


Tribs Rev.1 (FY18)

MSD Project No.: 12441

Boring: 217-8

MSD-Tribs

41-1-37530

Boring Designation: $\frac{279}{9}$ Date: 1/19/18 Observer: Rad

Hole Volume

Volume (per Foot)	
Cubic Feet	Gallons
0.0218	0.16
0.0491	0.37
0.078	0.58
0.0873	0.65
0.1364	1.02
0.1963	1.47
0.2673	2.00
0.3491	2.61
	Cubic Feet 0.0218 0.0491 0.078 0.0873 0.1364 0.1963 0.2673

4" DIAM HULE Hole Volume(Ft³): <u>く</u> ゲ

Specific Gravit	.y
Portland T1 Cement:	3.15
Powdered Bentonite:	2.65
Potable Water:	1.00

1 cu.ft. H2O = 62.4 lbs.	•
1 gal. H20 = 8.33 lbs.	
1 cu.ft. H20 = 7.48 gals.	

*Compute volume (Ft³) from weight Cement = $Pounds/(3.15 \times 62.4)$ Bentonite = Pounds/(2.65 x 62.4) Water = pounds/(1.0 x 62.4)

7NT Chief: DALE MEYER

Misc. Calcs:

Backfill Quantity Worksheet

Depth to water(ft): 7.9^{-7}

Quantity Components Placed (per batch)				
Date:				
Portland Cement:				Pounds
Bentonite:				Pounds
Water:				Gallons
Batches:				
Quantity Components Placed (Total)				
Portland C	ement:			Pounds
Powdered Bentonite:				Pounds
Water:		-	-	Gallons^
(^ gals.x8.33lbs./gal)	Water:			Pounds

Total Grout Volume I	Placed in Cubic Feet*
Portland Cement:	
Bentonite:	
Water:	
Total:	· · · · · · · · · · · · · · · · · · ·

Low-Mobility Bac	kfill (lbs	/linear	foot of l	ooring)
Hole Diameter(in.):	4	6	8	10
Bentonite chips:	6	14	24	37.5
Pea gravel:	9.7	22	39	-
Notes: PLACE	y sheres	1200	L135) N	3 EN 10MI I
CHIPS FUZ	1 165			
PLACE GOAVED	- 10	0,9		
PLACE ASPHALL	ער	SUR	ALE	

Boring: <u>217-</u>9

Shannon & Wilson, Inc.

Hole Volume Diameter

> (in.) 1.0

2.0

3.0

3.78

4.0

5.0

6.0

7.0

8.0

9.0

MSD-LMT 41-1-37530

MSD - LMT 2017 Borings

Boring Designation: _____ 17-10 Date: //-29-/6 Observer:

Volume (per Foot)

Gallons

0.04

0.16

0.37

0.58

0.65

1.02

1.47

2.00

2.61

3.31

Cubic Feet

0.0055

0.0218

0.0491

0.0780

0.0873

0.1364

0.1963

0.2673

0.3491

0.4418

Backfill Grout Quantity Worksheet

Depth to water(ft): 16.34

Quantity Components Placed (per batch)				
Date:	11-29-16			
Portland Cement:	46			Pounds
Bentonite:	25			Pounds
Water:	30			Gallons
Batches:	1			

Quantity Components Placed (Total)		
Portland Cement:	46	Pounds
Powdered Bentonite:	25	Pounds
Water:	30	Gallons^
(^ gals. x 8.33lbs./gal)Water:	249.9	Pounds

Open Hole Volume: 4,81 Cu. Ft.

Specific Gravit	ty .
Portland T1 Cement:	3.15
Powdered Bentonite:	2.65
Potable Water:	1.00

1 cu.ft. H2O = 62.4 lbs. 1 gal. H20 = 8.33 lbs. 1 cu.ft. H20 = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = Pounds/(3.15 x 62.4)^{M6.50} Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

Dale Meyer

7NT Crew

Chief:

Misc. Calcs: $24' \times 0.1963 = 4.809$

Total Grout Volume Placed in Cubic Feet* Portland Cement: 0.234 Bentonite: 0.15 Water: 4,005 4.39 Total:

Completion Details: Notes: Used tremie into grout Pour will Sace 601 latert time Displaced water in hole as arout was placed, N Boring: 17-10

Diameter

(in.)

1.0

2.0

3.0

3.78

4.0

5.0

6.0

7.0

8.0

9.0

MSD-Tribs 41-1-37530

Boring Designation: L17-11 1119/16 Date: XH1. Observer:

Volume (per Foot)

Gallons

0.04

0.16

0.37

0.58

0.65

1.02 1.47

2.00

2.61

3.31

Cubic Feet

0.0055

0.0218

0.0491

0.0780

0.0873

0.1364

0.1963

0.2673

0.3491

0.4418

Backfill Grout Quantity Worksheet

Depth to water(ft): 15,5

Pounds

Pounds

Gallons

	Quantity Comp	onents	Placed	(per ba	tch)
	Date:		CALIFORNIA CONTRACTOR	10.000 I	
	Portland Cement:	and the party of the second second			Рс
	Bentonite:				Рс
	Water:		;	-	Ga
1	Batches:				
				The second s	nor a start
	Quantity Co	mnoner	nts Plac	ed (Tota	1)

Quantity Components Placed (Total)		
Portland Cement.	Pounds	
Powdered Bentonite:	Pounds	
Water:	Gallons^	
(^ gals. x 8.33lbs./gal)Water:	Pounds	

Total Grout Volume Placed in Cubic Feet*

Portland Cement:

Bentonite: Water-

Total:

Open Hole Volume: 7.0 Cu. Ft.

Specific Gravity			
Portland T1 Cement:	3.15		
Powdered Bentonite:	2.65		
Potable Water:	1.00		

1 cu.ft. H2O = 62.4 lbs.
1 gal. H20 = 8.33 lbs.
1 cu.ft. H20 = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = $Pounds/(3.15 \times 62.4)$ Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

CHARLE BROUGH.

7NT Crew

Misc. Calcs:

Chief:

Completion Details: REINSMALLED GRASS RUG. Notes: BAEKhuon WITH SOIL WARAS l

20'x 0,35 while = 70 ut

Boring: L17-11

Diameter

(in.) 1.0

2.0

3.0 3.78

4.0

5.0

6.0 7.0

8.0

9.0

MSD-LMT 41-1-37530

MSD - LMT 2017 Borings

Boring Designation: L12-12-Date: 11-28-16 Observer: AGM

Volume (per Foot)

Gallons

0.04

0.16

0.37

0.58

0.65

1.02

1.47

2.00

2.61

3.31

Cubic Feet

0.0055

0.0218

0.0491

0.0780

0.0873

0.1364 0.1963

0.2673

0.3491

0.4418

Backfill Grout Quantity Worksheet

Depth to water(ft):

Quantity Components Placed (per batch)				
Date:	11-28-16			
Portland Cement:	46			Pounds
Bentonite:	25			Pounds
Water:	30			Gallons
Batches:	l			
				-

Quantity Components Placed (Total)		
Portland Cement:	46	Pounds
Powdered Bentonite:	25	Pounds
Water:	25	Gallons^
(^ gals. x 8.33lbs./gal)Water:	208.25	Pounds

Specific Gravity			
Portland T1 Cement:	3.15		
Powdered Bentonite:	2.65		
Potable Water:	1.00		

1 cu.ft. H2O = 62.4 lbs.
1 gal. H20 = 8.33 lbs.
1 cu.ft. H20 = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = Pounds/ (3.15×62.4) Bentonite Volume= Pounds/(2.65 x 62.4)165. 🏌 Water Volume= pounds/(1.0 x 62.4)

7NT Crew Dale Meyer

Chief:

Misc. Calcs: 19,5 × 0.1963 = 3.828

Total Grout Volume I	Placed in Cubic Feet*
Portland Cement:	0.234
Bentonite:	0,151
Water:	3.337
Total	3.72

Completion	Details:		n de anno an sao a bha ann an Anna an Anna an Anna an Anna an Anna an Anna.
Will	place	50	ild
arass	plug	at	another
V tim	el V		

Notes:

Boring: ______

MSD - LMT 2017 Borings

Boring Designation: L17-13 Date: //-28 -/6 Observer: AGM

Backfill Grout Quantity Worksheet

Depth to water(ft):

Hole Volume

Diameter	Volume (per Foot)		
(in.)	Cubic Feet	Gallons	
1.0	0.0055	0.04	
2.0	0.0218	0.16	
3.0	0.0491	0.37	
3.78	0.0780	0.58	
4.0	0.0873	0.65	
5.0	0.1364	1.02	
6.0	0.1963	1.47	
7.0	0.2673	2.00	
8.0	0.3491	2.61	
9.0	0.4418	3.31	

Quantity Components Placed (per batch) Date: 1/-28-16 Portland Cement: Pounds 46 Bentonite: 25 Pounds Water: 25 Gallons Batches: 1

Quantity Components Placed (Total)		
Portland Cement:	46	Pounds
Powdered Bentonite:	25	Pounds
Water:	25	Gallons^
(^ gals. x 8.33lbs./gal)Water:	208.25	Pounds

Open Hole Volume: <u>3,73</u> Cu. Ft.

Specific Gravit	ty
Portland T1 Cement:	3.15
Powdered Bentonite:	2.65
Potable Water:	1.00

1 cu.ft. H2O = 62.4 lbs. 1 gal. H20 = 8.33 lbs. 1 cu.ft. H20 = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = $Pounds/(3.15 \times 62.4)$ Bentonite Volume= Pounds/ (2.65×62.4) Water Volume= pounds/(1.0 x 62.4)

7NT Crew

Chief:

Misc. Calcs:	19 x	0	.196	3		3,	229	2)
--------------	------	---	------	---	--	----	-----	---	---

oecific Gravit	у		Total Grout Volume Placed in Cu	bic Feet*
T1 Cement:	3.15		Portland Cement: 0.23	4
l Bentonite:	2.65		Bentonite: 0.15	/
able Water:	1.00		Water: <u>3,33</u>	7
		-		
O = 62.4 lbs.			Total: 3.7	2
= 8.33 lbs.		, i i i i i i i i i i i i i i i i i i i		
) = 7.48 gals.			Completion Details:	
			Will place	soil + a rass.
ıte vol.(cu.ft.) from wei	ight	plug at a	later Wate
lume = Pour	nds/(3.15 x	(62.4)		
Volume= Pou	unds/(2.65	x 62.4)		
ume= pounds	s/(1.0 x 62	.4)	Notes:	
Dale	Meyer			
: 19×0.	1963 =	3.7297		

Boring: LD-13

Diameter

(in.)

1.0

2.0

3.0

MSD - LMT 2017 Borings

Boring Designation: L17-14 Date: 11/29/ 16 Observer: DPm

Volume (per Foot)

Cubic Feet Gallons

0.0055

0.0218

0.0491

Backfill Grout Quantity Worksheet

Depth to water(ft):

3.78 0.0780 0.58 0.65 Quantity Components Placed (Total) 4.0 0.0873 5.0 0.1364 1.02 Portland Cement: Pounds 10 1.47 0.1963 **Powdered Bentonite:** Pounds 6.0 10 7.0 0.2673 2.00 Water: 20 Gallons[^] ^ gals. x 8.33lbs./gal)Water: 8.0 0.3491 2.61 166.6 Pounds 9.0 0.4418 3.31 20(0.1364)= Open Hole Volume: 2,73 Cu. Ft. Specific Gravity Total Grout Volume Placed in Cubic Feet* Portland Cement: O1051 Portland T1 Cement: 3.15 Powdered Bentonite: 2.65 Bentonite: 0,060 **Potable Water:** 1.00 Water: 2,67 2.78 1 cu.ft. H2O = 62.4 lbs.Total: 1 gal. H20 = 8.33 lbs. 1 cu.ft. H20 = 7.48 gals. Completion Details: grout/soil below acound to approx. *To compute vol.(cu.ft.) from weight surface by 0910 on 11/29/16. Cement Volume = Pounds/(3.15 x 62.4) Bentonite Volume= Pounds/ (2.65×62.4) Water Volume= pounds/(1.0 x 62.4) Notes: sout niked in 55 gab down **7NT Crew** -grant pumped through treme pipe, as Jale Meyer Chief: cuthings added to the hole, bucket placed over hole so grant could set. final soil Misc. Calcs: to be placed later, Boring: 17-14

\\stl-fs1\VOL1\EF\41-1 STL\37500s\37530\All LMT Data\GIWPs\Old Data Forms\Grout backfill Reports\Grout backfill Rev. 3

0.04

0.16

0.37

Quantity Components Placed (per batch) Date: 11/29/16 11/29/16 Pounds 94. Krete Type 1/1 Portland Cement: ~ 5 ~ 5 Pounds Puregold gel Bentonite: ~ 5 NS Gallons Water: 10 N10 Batches: 2 Í

HDR

Shannon & Wilson, Inc.

Hole Volume

Diameter

(in.)

1.0 2.0

3.0

3.78

4.0

5.0

6.0

7.0

8.0

9.0

MSD- LMT 41-1-37530

MSD - LMT 2017 Borings

Boring Designation: L17-15 Date: <u>11-29-16</u> Observer: <u>AGM</u>

Volume (per Foot)

Gallons

0.04

0.16

0.37

0.58

0.65

1.02

1.47

2.00 2.61

3.31

Cubic Feet

0.0055

0.0218

0.0491

0.0780

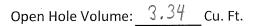
0.0873

0.1364

0.1963)

0.2673

0.3491


0.4418

Backfill Grout Quantity Worksheet

Depth to water(ft):

Quantity Components Placed (per batch)				
Date:	11-29-16			
Portland Cement:	35			Pounds
Bentonite:	20			Pounds
Water:	20			Gallons
Batches:				

Quantity Components Placed (Total)		
Portland Cement:	35	Pounds
Powdered Bentonite:	20	Pounds
Water:	20	Gallons^
(^ gals. x 8.33lbs./gal)Water:	166.6	Pounds

Specific Gravity	Total Grout Volume Placed in Cubic Feet*
Portland T1 Cement: 3.15	Portland Cement: 0.178
Powdered Bentonite: 2.65	Bentonite: 0.121
Potable Water: 1.00	Water: <u>2.670</u>
1 cu.ft. H2O = 62.4 lbs.	Total: 2.97
1 gal. H20 = 8.33 lbs.	
1 cu.ft. H20 = 7.48 gals.	Completion Details:
*To compute vol.(cu.ft.) from wei	ght
Cement Volume = Pounds/(3.15 x	(62.4) 196.56
Bentonite Volume= Pounds/(2.65	x 62.4) 165,36
Water Volume= pounds/(1.0 x 62	.4) Notes: grouted with tremic
7NT Crew	Pipe up to surface of bround.
Chief: Dale Meye	- allowed to set up w/ a bocke
	over hole, Will place soil 9
2	grass plug at a later
Misc. Calcs: 17'x 0.1963 = 3	337 +ime
	Boring: <u>L17-15</u>

(in.)

1.0

2.0

3.0

3.78

4.0

5.0

6.0 7.0

8.0

9.0

Boring Designation: L17-16 Date: 11/9/16 Observer: $\chi H \mathcal{L}$

Volume (per Foot)

Cubic Feet | Gallons

0.04

0.16

0.37

0.58

0.65

1.02

1.47

2.00

2.61

3.31

0.0055

0.0218

0.0491

0.0780

0.0873

0.1364

0.1963

0.2673

0.3491

0.4418

Backfill Grout Quantity Worksheet

Depth to water(ft): Day

Quantity Components Placed (per batch) Date: Portland Cement: Pounds Bentonite: Pounds Gallons Water: Batches:

Quantity Components Placed (Total)		
Portland Cement:		Pounds
Powdered Bentonite:		Pounds
Water:	Construction of the second	Gallons^
(^ gals. x 8.33lbs./gal)Water:	100	Pounds

Total Grout Volume Placed in Cubic Feet*

Portland Cement:

Bentonite: Water:

Total:

Pwc

Notes:

Completion Details: REINSTALLED

BACKAUED WITH

1

SOIL GITTAGS.

Open Hole Volume: 5.0 Cu. Ft.

Specific Gravit	ty	
Portland T1 Cement: 3.15		
Powdered Bentonite:	2.65	
Potable Water:	1.00	

1 cu.ft. H2O = 62.4 lbs.
1 gal. H20 = 8.33 lbs.
1 cu.ft. H20 = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = Pounds/(3.15 x 62.4) Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

CHARLER BRONGH

7NT Crew

Chief:

Misc. Calcs: 14.2'x 0.35 wfff = 5.0 wft

Boring: L17-16

GRASS

(in.)

1.0

2.0

3.0

3.78

4.0

5.0

6.0

7.0

8.0 9.0

MSD- Tribs 41-1-37530

MSD - TRIBS Borings

Boring Designation: <u>617-17</u> Date: <u>119/16</u> Observer: <u>KHC</u>

Cubic Feet

0.0055

0.0218

0.0491

0.0780

0.0873

0.1364

0.1963

0.2673

0.4418

Volume (per Foot)

Gallons

0.04

0.16

0.58

0.65

1.02

1.47

2.00

2.61

3.31

Backfill Grout Quantity Worksheet

Depth to water(ft): 6,5'

Quantity Components Placed (per batch)				
Date:				NAMES OF THE OWNER OF
Portland Cement:			Contraction of Contraction	Pounds
Bentonite:	and the second se			Pounds
Water:		,		Gallons
Batches:				

Quantity Components Placed (Total)		
Portland Cement:		Pounds
Powdered Bentonite:	C.S. Constanting and Service	Pounds
Water:		Gallons^
(^ gals. x 8.33lbs./gal)Water:		Pounds

Total Grout Volume Placed in Cubic Feet*

Portland Cement:

Bentonite: Water:

Total:

Completion Details:

Open Hole Volume: <u>5, Z</u> Cu. Ft.

Specific Gravity		
Portland T1 Cement:	3.15	
Powdered Bentonite:	2.65	
Potable Water:	1.00	

1 cu.ft. H2O = 62.4 lbs.
1 gal. H20 = 8.33 lbs.
1 cu.ft. H20 = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = Pounds/(3.15 x 62.4) Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

7NT Crew

Chief:

Notes: BACKFILLED WITH SOIL INTINGS.

REINSMALLED, GRASS

Misc. Calcs: 151×0,3481=5.200 Fr.

CHARLIE BROJGH

l Boring: 617-17

(in.)

1.0

2.0

3.0

3.78

4.0

5.0

6.0

7.0

8.0

9.0

MSD - TRIBS Borings Boring Designation: 217 - 18Date: 5/2/17Observer: Rwc

Volume (per Foot) Cubic Feet Gallons

0.0055

0.0218

0.0491

0.0780

0.0873

0.1364

0.1963

0.2673

0.3491

0.4418

0.04

0.16

0.37

0.58

0.65

1.02

1.47

2.00

2.61

3.31

Backfill Grout Quantity Worksheet

Depth to water(ft): $3, \mathcal{B}$

Quantity Components Placed (per batch)			
Date:			
Portland Cement:			Pounds
Bentonite:			Pounds
Water:			Gallons
Batches:			

Quantity Components Placed (Total)	
Portland Cement:	Pounds
Powdered Bentonite:	Pounds
Water:	Gallons^
(^ gals. x 8.33lbs./gal)Water:	Pounds

Completion Details: BIF wint 1002BS BENTON INE CHIPS ON

TOP TO SURPACE WITH SUIL

Notes: 2 4" IN 1454 10 16 B65

Total Grout Volume Placed in Cubic Feet*

Total:

CUMNES

Portland Cement: Bentonite: Water:

Open Hole Volume: Cu. Ft.

Specific Gravit	ty
Portland T1 Cement:	3.15
Powdered Bentonite:	2.65
Potable Water:	1.00

1 cu.ft. H2O = 62.4 lbs. 1 gal. H20 = 8.33 lbs. 1 cu.ft. H20 = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = $Pounds/(3.15 \times 62.4)$ Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

7NT Crew

JUHN GILBERT Chief:

Misc. Calcs:	•
• ·	

Boring: 217-18

Hole Volume

(in.)

1.0

2.0

3.0

3.78

4.0

5.0

6.0

7.0

8.0

9.0

MSD - TRIBS Borings Boring Designation: L17-19 Date: 5/2/17 Observer: Ruc

Volume (per Foot)

Cubic Feet Gallons

0.04

0.16

0.37

0.58

0.65

1.02

1.47

2.00

2.61

3.31

0.0055

0.0218

0.0491

0.0780

0.0873

0.1364

0.1963

0.2673

0.3491

0.4418

Backfill Grout Quantity Worksheet

Depth to water(ft): //

Quantity ComponentsPlaced (per batch)Date:Portland Cement:PoundsBentonite:PoundsWater:GallonsBatches:

Quantity Components Placed (Total)				
Portland Cement: Poun				
Powdered Bentonite:	Pounds			
Water:	Gallons^			
(^ gals. x 8.33lbs./gal)Water:	Pounds			

Open Hole Volume: Cu. Ft.

Specific Gravity				
Portland T1 Cement:	3.15			
Powdered Bentonite:	2.65			
Potable Water:	1.00			

1 cu.ft. H2O = 62.4 lbs. 1 gal. H2O = 8.33 lbs. 1 cu.ft. H2O = 7.48 gals.

*To compute vol.(cu.ft.) from weight Cement Volume = Pounds/(3.15 x 62.4) Bentonite Volume= Pounds/(2.65 x 62.4) Water Volume= pounds/(1.0 x 62.4)

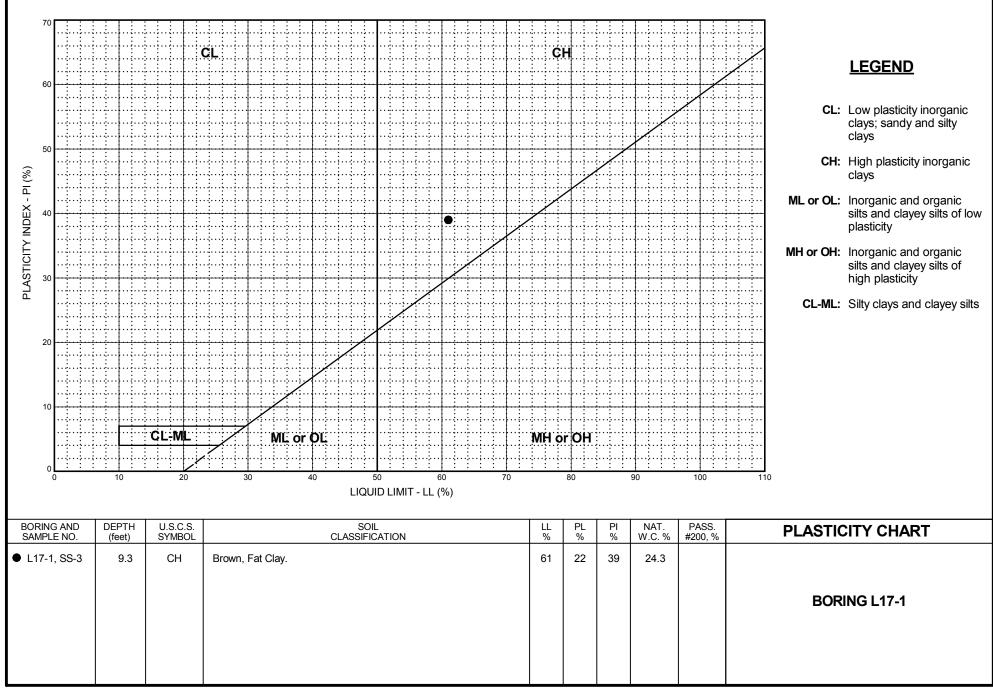
JUHN GILBERT

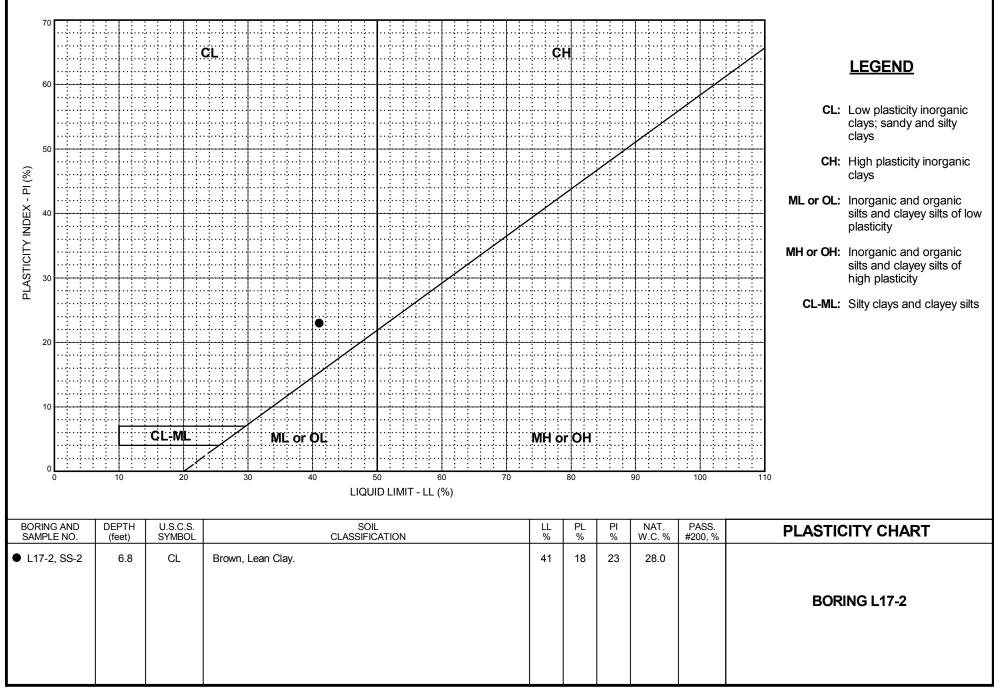
7NT Crew

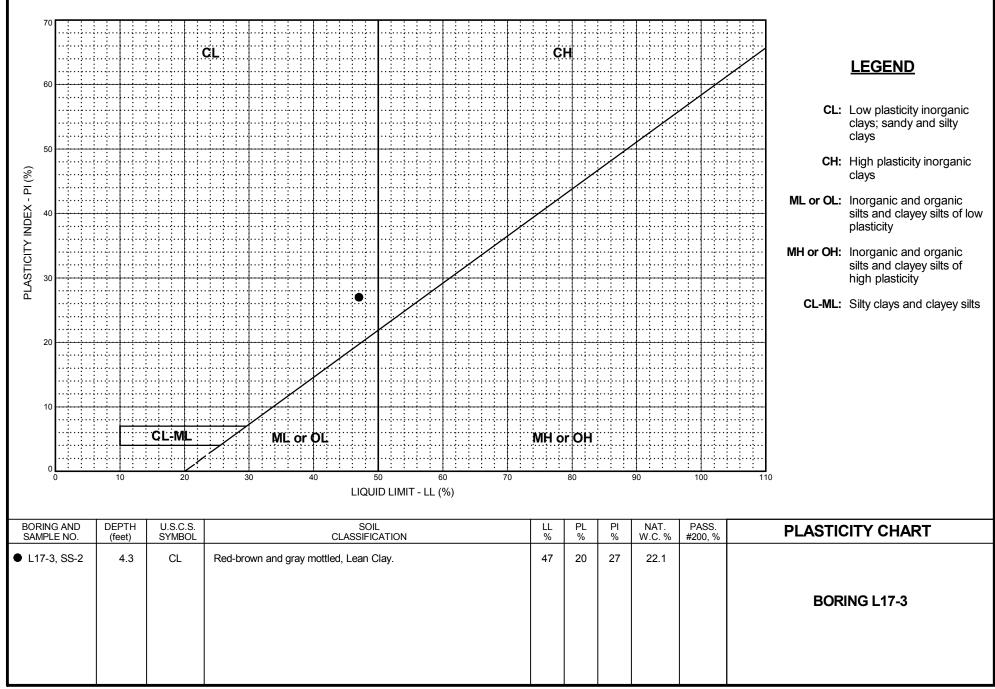
Chief:

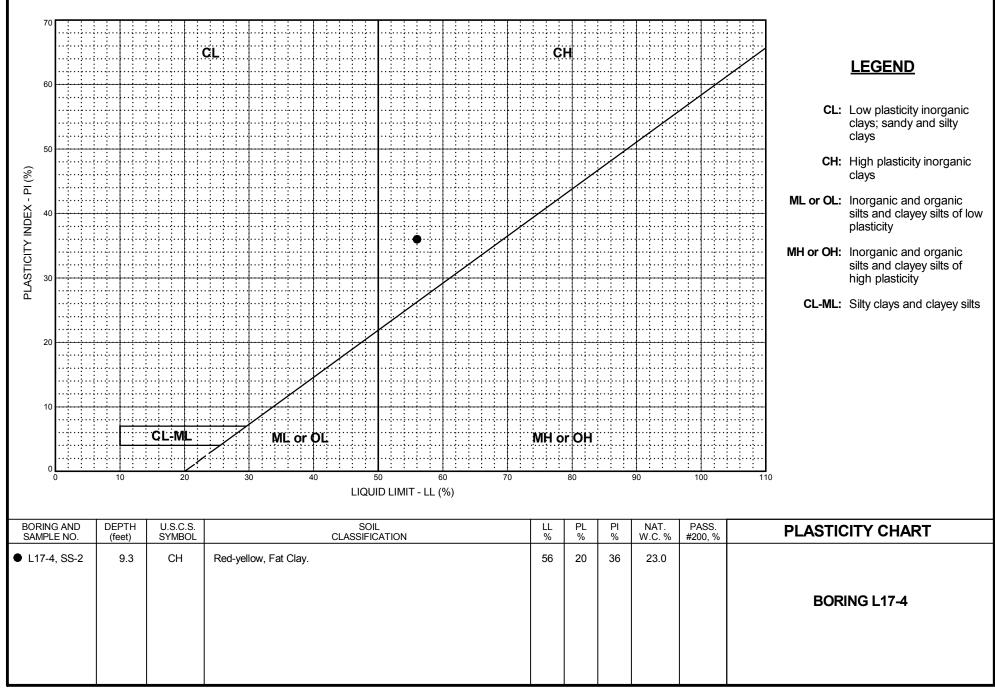
Misc. Calcs:			

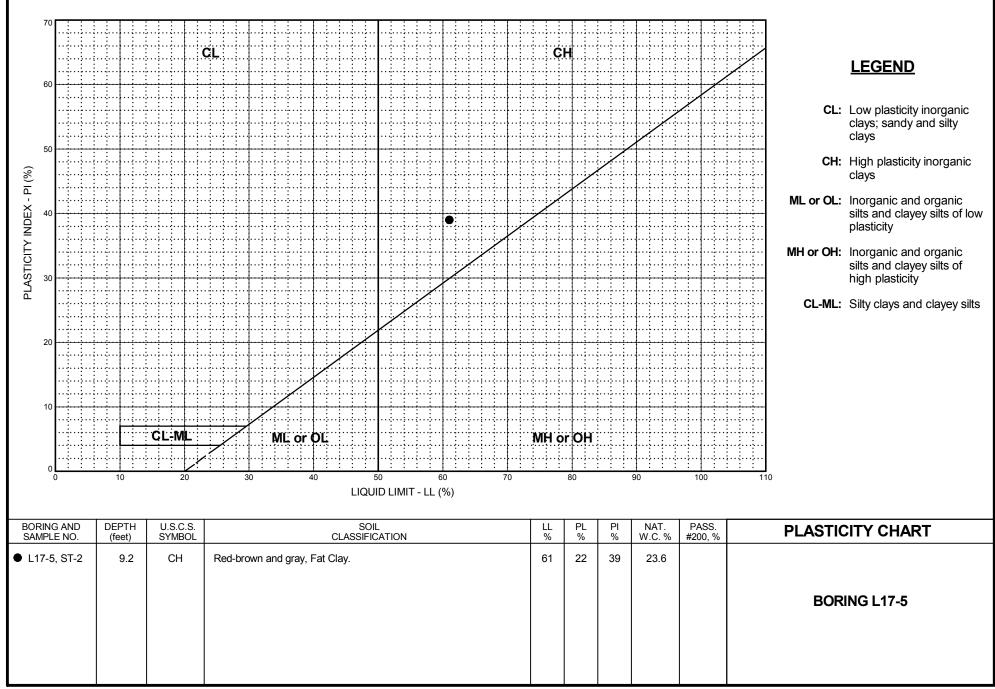
Boring: L17-19	Boring:	LI	7-	19	
----------------	---------	----	----	----	--

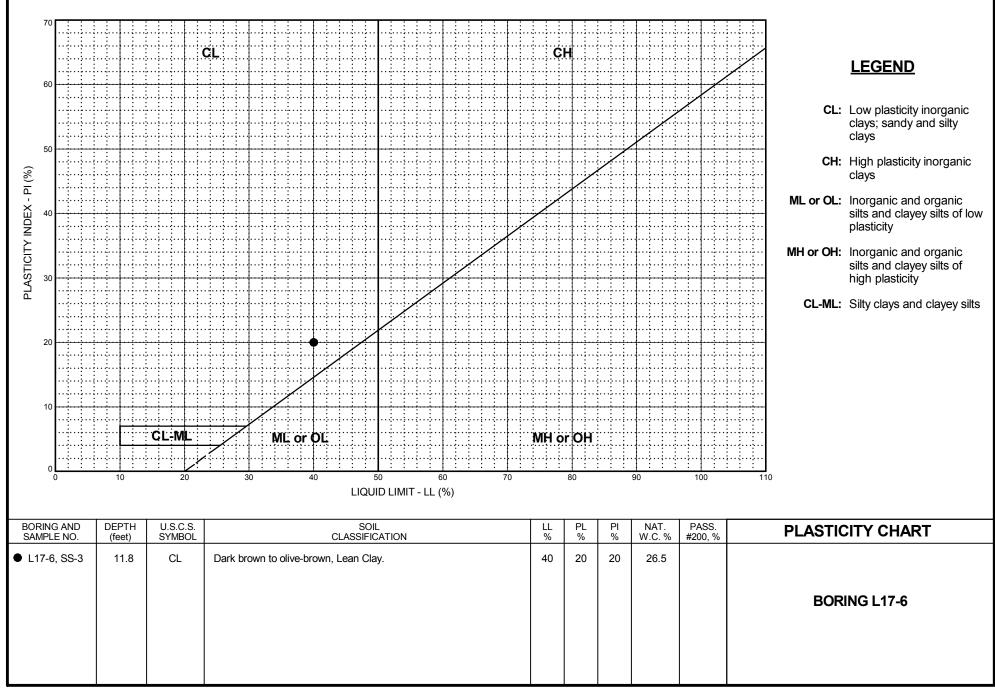

\\stl-fs1\VOL1\EF\41-1 STL\37500s\37530\All LMT Data\GIWPs\Old Data Forms\Grout backfill Reports\Grout backfill Rev. 3

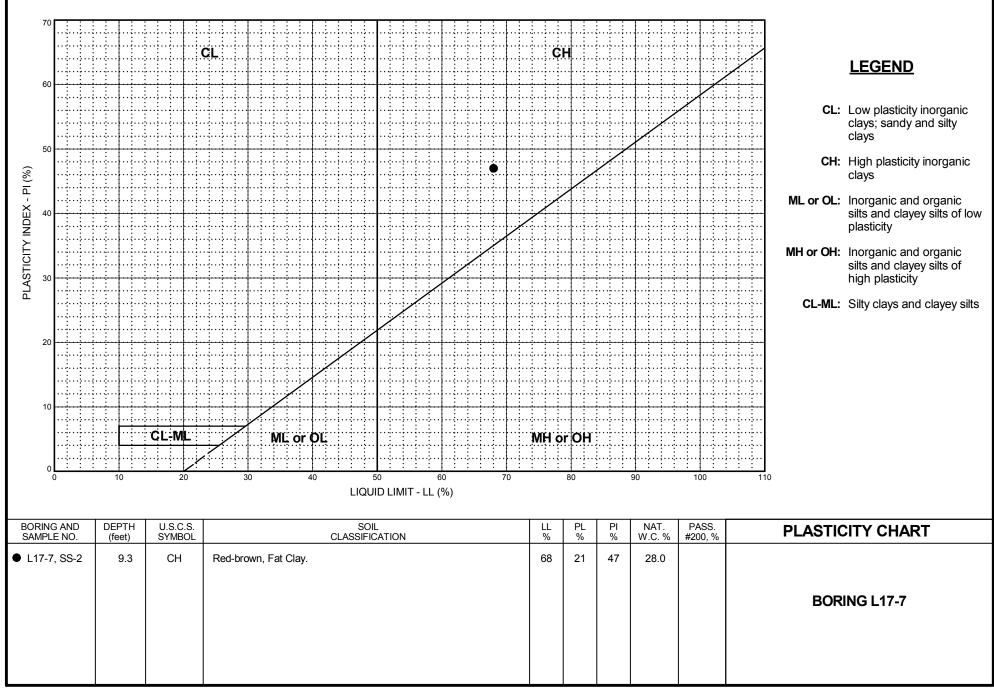

Total Grout Volume I	Placed in Cubic	Feet*
Portland Cement:		
Bentonite:		
Water:		
•		
Total:		

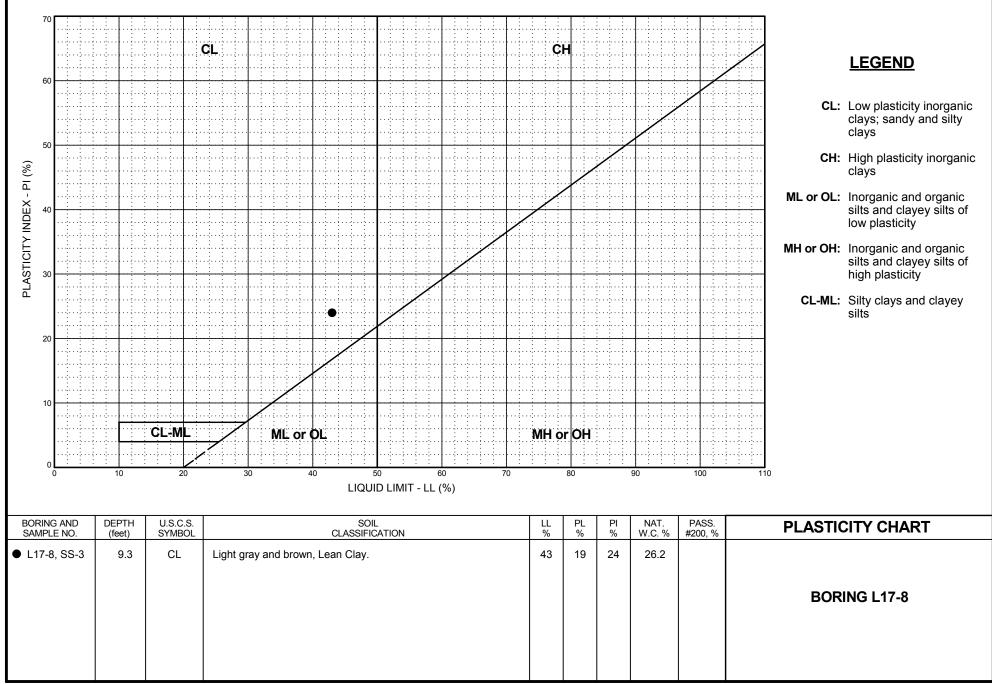

Completion Details: BACKPILL WITH TOOLAS BED-TONISE CHIPS NI 1365 TOP MITH SULL CUMPAS

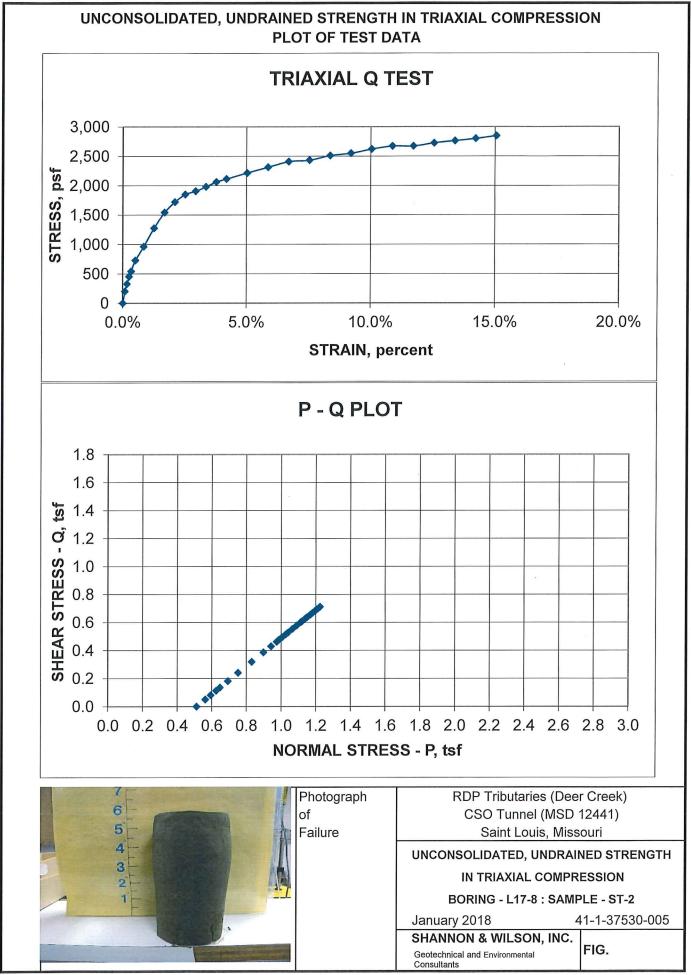

Notes: 21/4" ID H54 10 13.5

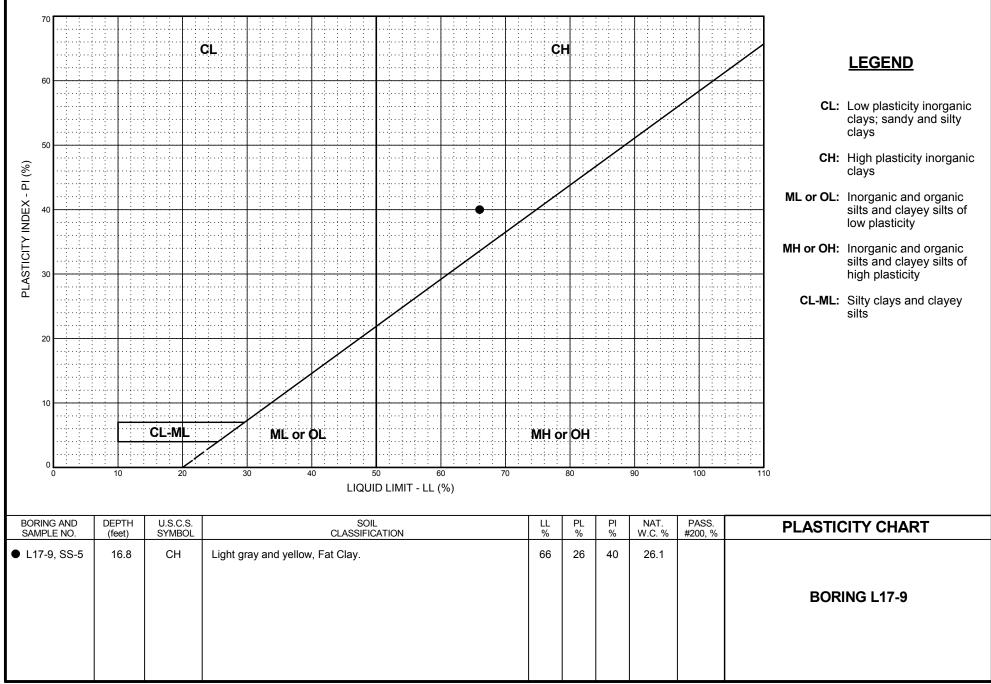

Appendix D Laboratory Test Reports This page intentionally left blank







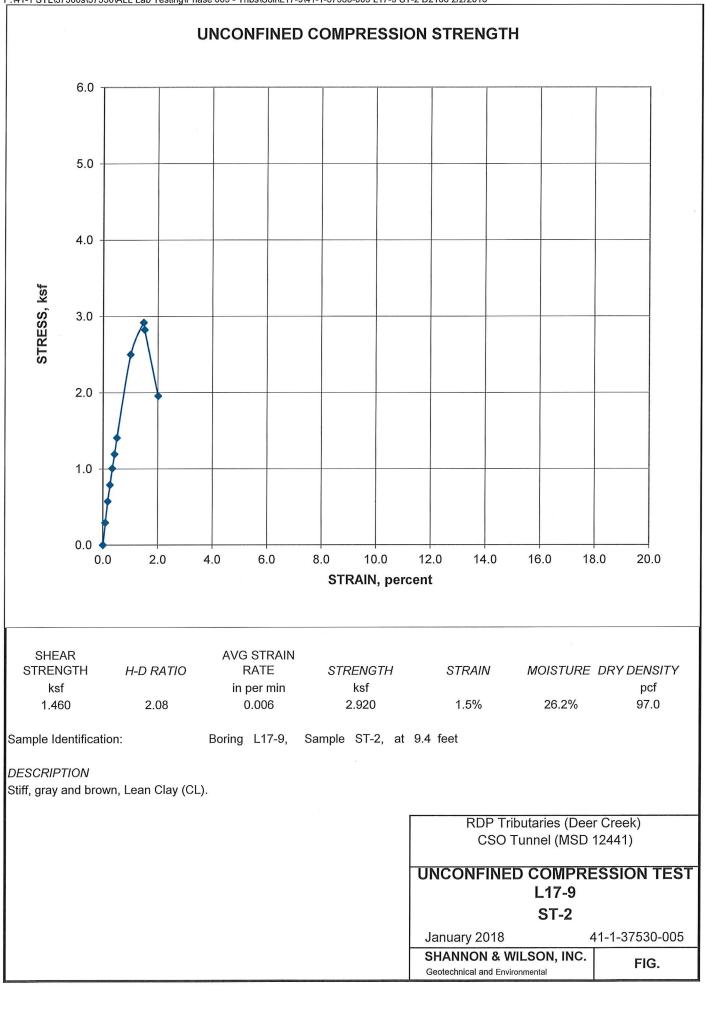


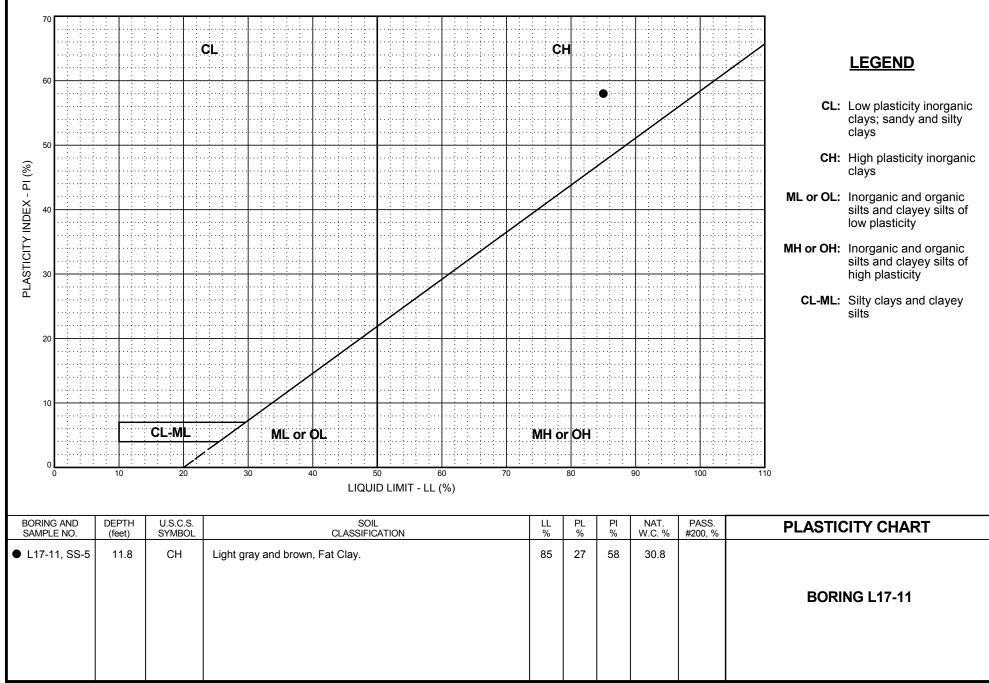


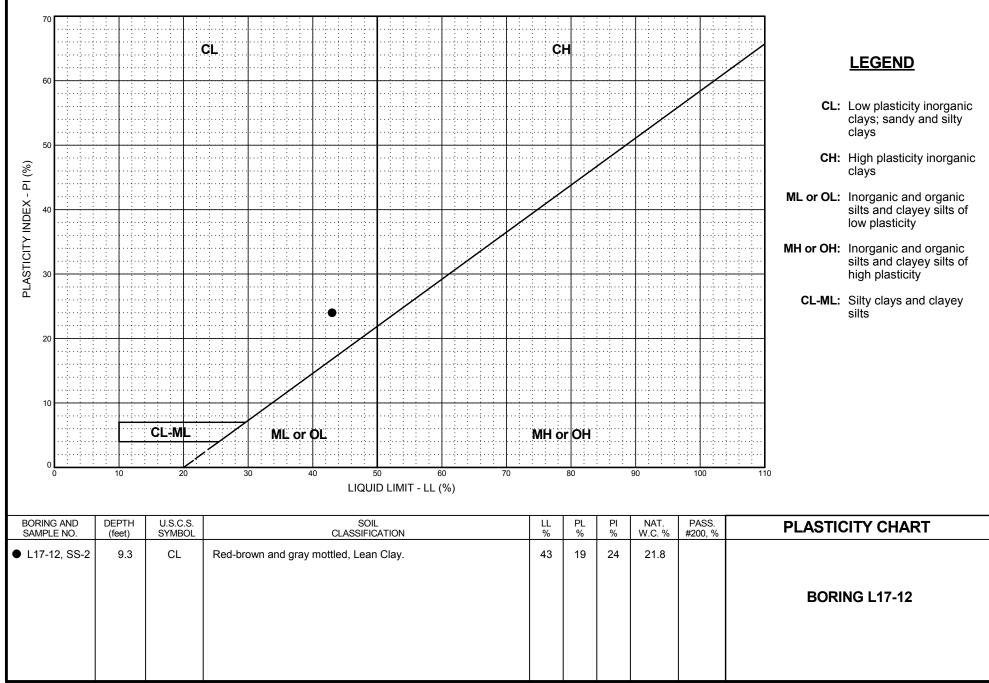
UNCONSOLIDATED, UNDRAINED STRENGTH IN TRIAXIAL COMPRESSION SUMMARY OF TEST DATA						
Boring	L17-8			Tested by / Date	۵	CMB 01/30/18
Sample	ST-2			Calculated by /		CMB 01/31/18
Depth (ft)	7.1			Checked by / Da		DPM 2/2/18
Description	Medium stiff to s	tiff gray Lean	Clay (CL)	Checked by / D	ale	0/11 4/2/18
Specimen Data	Medium Sun to S	un, gray, Lean	Instrument Cons			
Height	5 081	inches	Deformation	0.001	inches/d	iv
Diameter		inches	Load	1	lb/div.	
H/D ratio	2.072		Confinment	7.1	psi	
Volume	641.6		Comminent	7.1	lhai	
Wet wt.	1243.99		Peak values			
Bulk Density	1243.99			1.223	tsf	
	94.0		р а	0.712	tsf	
Dry Density M.C.			q	15.0%	%	
		percent	strain			in
Saturation		percent	strain rate	0.040	in. per m	in.
Void ratio	0.793					
Gs		assumed		0		
Deformation	Load	Strain	Load	Stress	p	q
div.	div.	%	lb	tsf	tsf	tsf
0.000	0.0	0.0%	0.0	0.000	0.511	0.000
0.005	9.2	0.1%	9.2	0.101	0.562	0.051
0.010	14.9	0.2%	14.9	0.164	0.593	0.082
0.015	20.6	0.3%	20.6	0.226	0.624	0.113
0.020	24.8	0.3%	24.8	0.272	0.647	0.136
0.030	33.3	0.5%	33.3	0.364	0.693	0.182
0.050	44.2	0.8%	44.2	0.482	0.752	0.241
0.075	58.8	1.3%	58.8	0.639	0.831	0.319
0.100	71.4	1.7%	71.4	0.772	0.897	0.386
0.125	79.9	2.1%	79.9	0.861	0.942	0.430
0.150	86.2	2.5%	86.2	0.925	0.974	0.462
0.175	89.2	2.9%	89.2	0.953	0.988	0.477
0.200	93.0	3.3%	93.0	0.990	1.006	0.495
0.225	97.3	3.8%	97.3	1.031	1.027	0.516
0.250	100.1	4.2%	100.1	1.057	1.040	0.528
0.300	105.8	5.0%	105.8	1.108	1.065	0.554
0.350	111.3	5.9%	111.3	1.156	1.089	0.578
0.400	116.8	6.7%	116.8	1.204	1.113	0.602
0.450	118.9	7.5%	118.9	1.216	1.119	0.608
0.500	123.6	8.4%	123.6	1.255	1.138	0.627
0.550	126.6	9.2%	126.6	1.275	1.149	0.638
0.600	131.1	10.0%	131.1	1.310	1.166	0.655
0.650	134.7	10.9%	134.7	1.336	1.179	0.668
0.700	135.7	11.7%	135.7	1.336	1.179	0.668
0.750	139.5	12.5%	139.5	1.363	1.193	0.682
0.800	142.5	13.4%	142.5	1.382	1.202	0.691
0.850	145.4	14.2%	145.4	1.400	1.211	0.700
0.900	149.0	15.0%	149.0	1.424	1.223	0.712
					butaries (De	
				CSO T	Funnel (MSI	D 12441)
				Sai	nt Louis, Mi	ssouri
						INED STRENGTH
					AXIAL COMP	
			4	BORING	- L17-8 : SAN	IPLE - ST-2
				January 2018		41-1-37530-005
				SHANNON & WII Geotechnical and Environ Consultants	LSON, INC.	FIG.

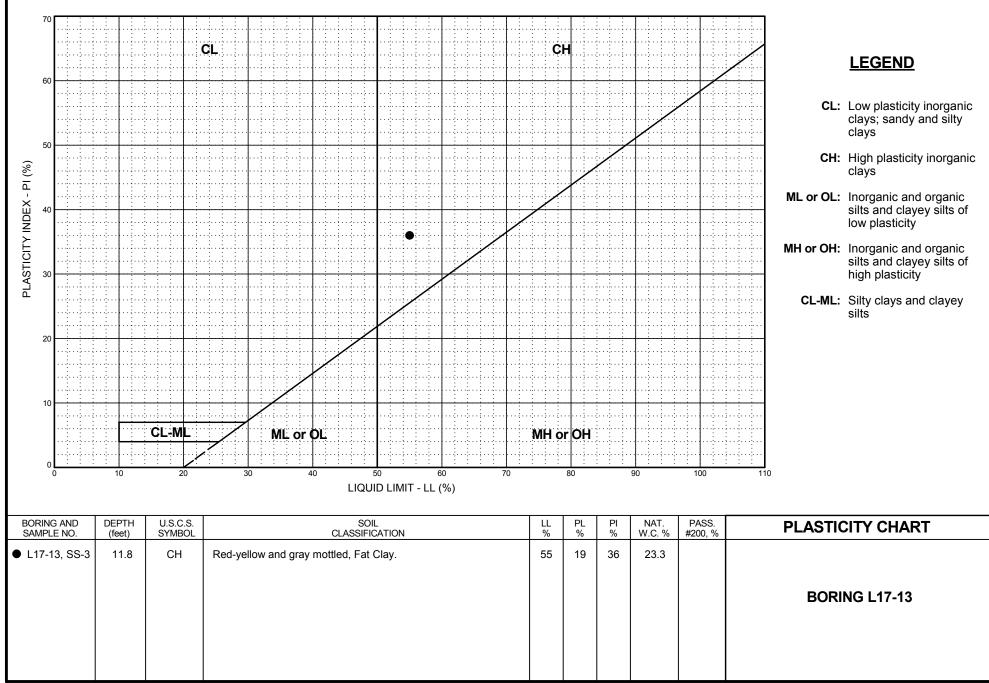
P:\41-1 STL\37500s\37530\ALL Lab Testing\Phase 005 - Tribs\Soil\L17-8\41-1-37530-005 L17-8 ST-2 D2850 2/2/2018

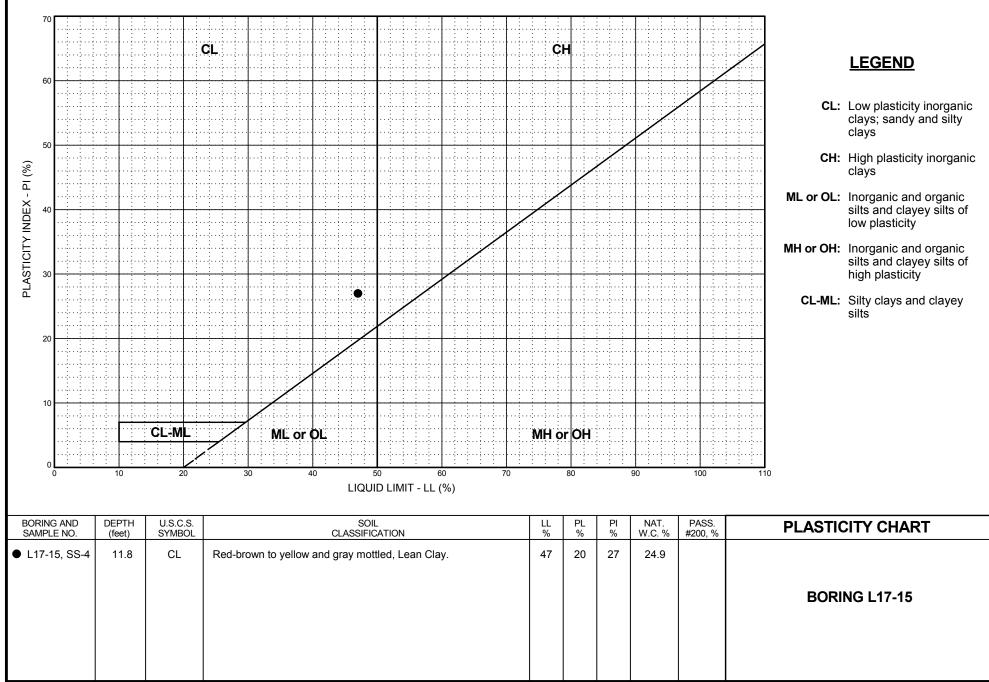
UNCONFINED COMPRESSIVE STRENGTH

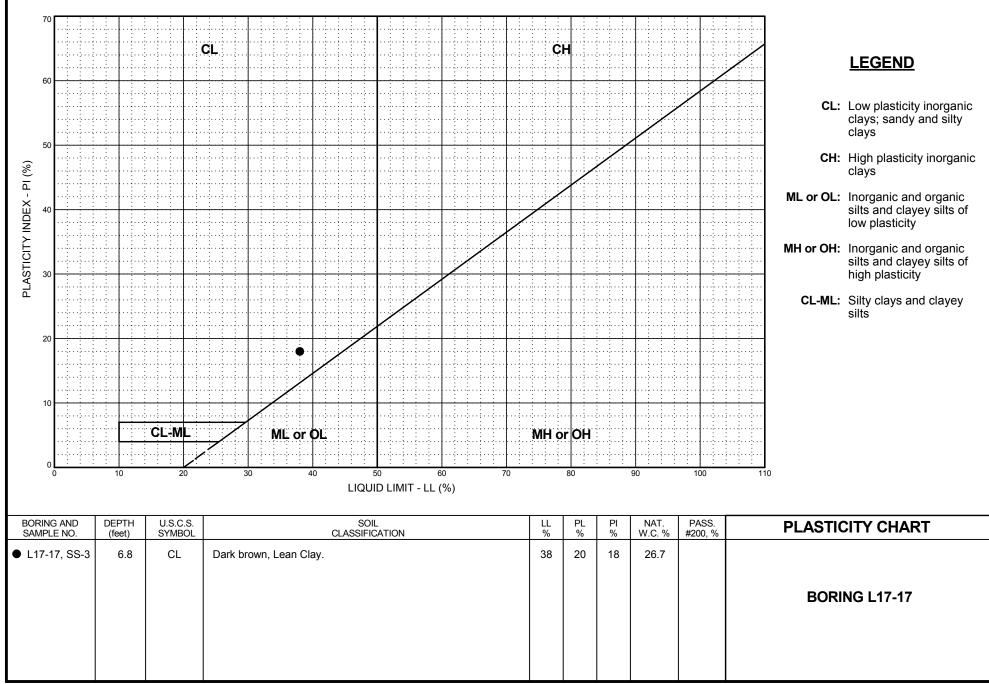

Project	RDP Tributaries (Deer Creek)			Client	HDR/MSD/WSP			
Location	CSO Tunnel (MSD 12441)			Tested By / Date	CI	01/30/18		
Job No.	41-1-37530-005			Calculated By / Date	CI	01/31/18		
Boring No.	L17-9			Checked By / Date	Df	DPM		
Sample	ST-2			File	41-1-37530-005	41-1-37530-005 L17-9 ASTM D2166		
Depth (ft)	9.4			Procedure	ASTM D216	6		
Description	(D 2488 + symbol)	Stiff, gray and	d brown, Leai	n Clay (CL).				
Undisturbed/	Remolded	Undisturbed	The second			TEST DATA		
SAMPLE DATA			-	Time	Deflection	Load		
Diameter	2.885	inches	73.3	mm	hr-min-sec	divisions	divisions	
Length	5.992	inches	152.2	152.2 mm		0	0	
Wet Wt.	1259.20 grams			0:00:05	5	13.4		
AFTER TES	T WATER CO	NTENT			0:00:10	10	26.1	
Tare No.	9				0:00:15	15	36.0	
Tare Wt.	178.50	grams			0:00:20	20	45.9	
Wet & Tare	1434.45	grams			0:00:25	25	54.4	
Dry & Tare	1173.55	grams			0:00:30 30		64.3	
				0:01:00	60	114.7		
Deflection	0.001	inch/division			0:01:28	88	134.5	
Load	1 Ib/division			0:01:30	90	130.2		
				0:02:00	120	90.6		
Photograph of Failure					0:03:00	180		

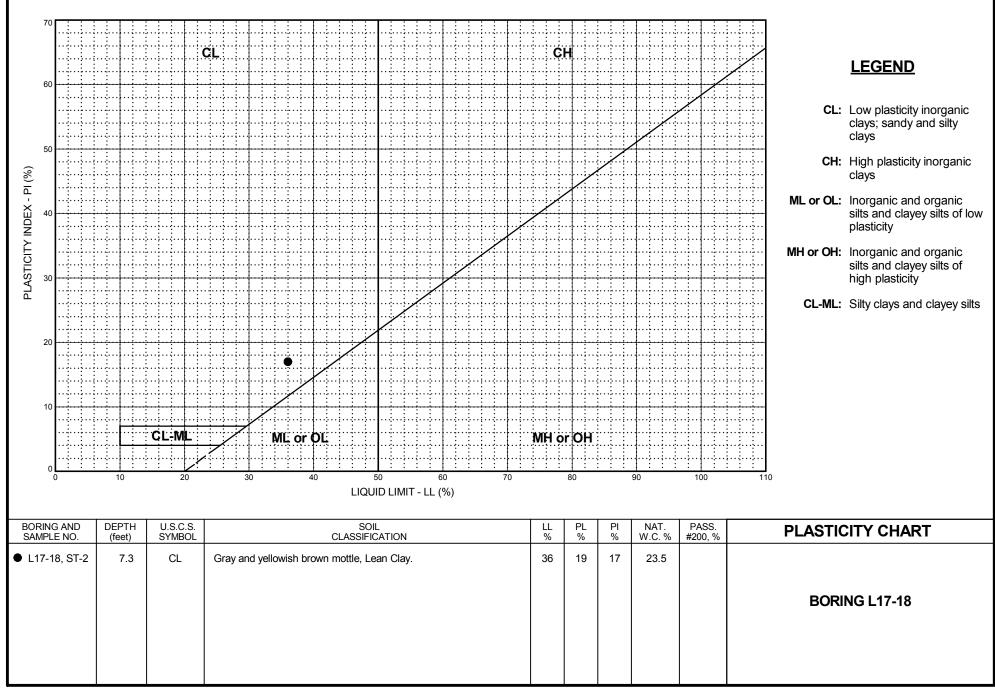


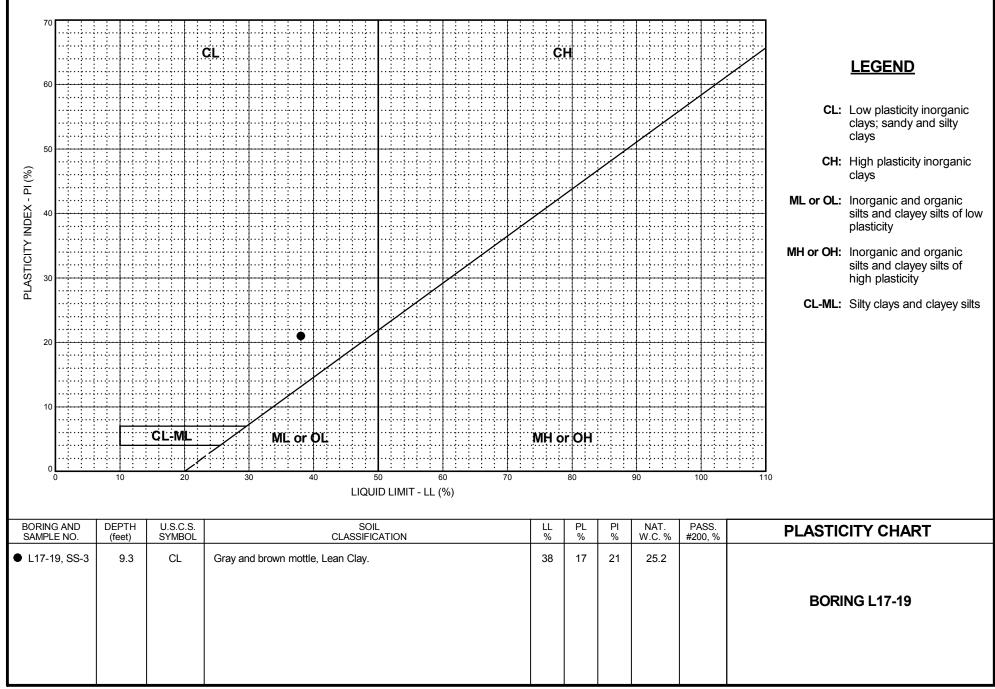

0:00:25	25	54.4
0:00:30	30	64.3
0:01:00	60	114.7
0:01:28	88	134.5
0:01:30	90	130.2
0:02:00	120	90.6
0:03:00	180	
0:04:00	240	
0:05:00	300	
0:06:00	360	
0:07:00	420	
0:08:00	480	
0:09:00	540	
0:10:00	600	
0:11:00	660	
0:12:00	720	
0:13:00	780	
0:14:00	840	
0:15:00	900	

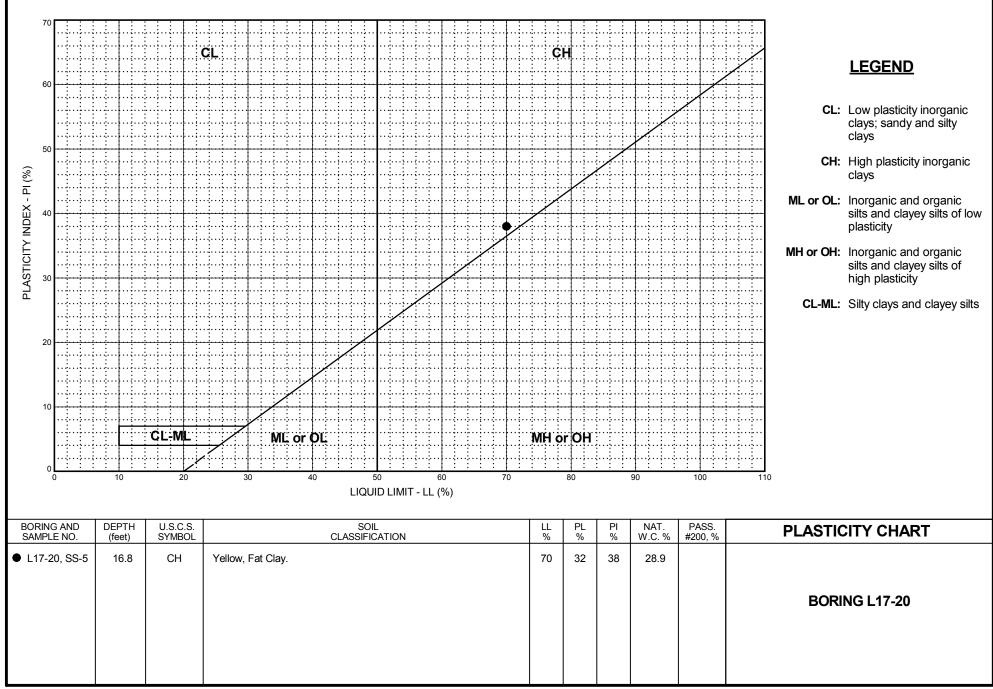

REMARKS: ____


NOTE: The moisture content is taken from the entire sample after the test is run









This page intentionally left blank

-	
6.	
-	ekiad, inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Work Order: 17050416

Report Date: 12-May-17

Lab ID:	17050416-013
Matrix:	SOLID

Collection Date: 05/05/2017 10:30

					-			
	Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600	2-78-054 METHO	D 3.2.18.1						
Resistiv	ity, Solid		150	891	Ohms/cm	1	05/10/2017 12:46	R232615
EPA SW	846 3550C, 5035A	, ASTM D2974						
Percent	Moisture		0.1	22.2	%	1	05/08/2017 16:41	R232551
STANDA	ARD METHODS 450	00-CL E (TOTAL)						
Chloride	9	NELAP	62	354	mg/Kg-dry	1	05/10/2017 17:06	130109
SW-846	9030B, 9034							
Sulfide,	Total	NELAP	35	< 35	mg/Kg-dry	1	05/09/2017 16:46	129995
SW-846	9036 (TOTAL)							
Sulfate		NELAP	123	130	mg/Kg-dry	1	05/10/2017 17:08	130108
SW-846	9045C							
pH (1:1)		NELAP	1.00	7.08		1	05/09/2017 20:12	R232584

-	
(
	ekiad inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Work Order: 17050416

Report Date: 12-May-17

Lab ID:	17050416-011
---------	--------------

Matrix: SOLID	Collection Date: 05/05/2017 10:30							
Analyses	Certification	RL (Qual Re	esult	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHO	D 3.2.18.1							
Resistivity, Solid		150		1200	Ohms/cm	1	05/10/2017 12:40	R232615
EPA SW846 3550C, 5035A	, ASTM D2974							
Percent Moisture		0.1		27.4	%	1	05/08/2017 16:41	R232551
STANDARD METHODS 45	00-CL E (TOTAL)							
Chloride	NELAP	67		428	mg/Kg-dry	1	05/10/2017 16:57	130109
SW-846 9030B, 9034								
Sulfide, Total	NELAP	36		< 36	mg/Kg-dry	1	05/09/2017 16:44	129995
SW-846 9036 (TOTAL)								
Sulfate	NELAP	133	J	120	mg/Kg-dry	1	05/10/2017 17:00	130108
SW-846 9045C								
pH (1:1)	NELAP	1.00		6.86		1	05/09/2017 20:06	R232584

(57			
6		blak	Im	0
		Nironmen	tal Labora	atory

http://www.teklabinc.com/

Work Order: 17020225

Client Project: RPD Tribs 41-1-37530-005

Client: Shannon & Wilson, Inc.

Report Date: 13-Feb-17 Client Sample ID: L17-3

Lab ID: 17020225-012 Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHO	D 3.2.18.1							
Resistivity, Solid		150		690	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A	A, ASTM D2974							
Percent Moisture		0.1		14.6	%	1	02/07/2017 20:21	R228924
STANDARD METHODS 45	00-CL E (TOTAL)							
Chloride	NELAP	59		89	mg/Kg-dry	1	02/07/2017 19:03	126885
SW-846 9030B, 9034								
Sulfide, Total	NELAP	35		52	mg/Kg-dry	1	02/07/2017 16:15	126917
SW-846 9036 (TOTAL)								
Sulfate	NELAP	1170	S	1680	mg/Kg-dry	10	02/07/2017 19:17	126887
MS and/or MSD did not recover within control limits. Result is verified by re-analysis at greater dilution.								
SW-846 9045C								
pH (1:1)	NELAP	1.00		4.44		1	02/06/2017 22:08	R228848

-	2
6	allah Ino
6	Environmental Laboratory
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Work Order: 17020225

Report Date: 13-Feb-17

Lab ID: 17020225-013

Matrix: SOLID	Collection Date: 01/27/2017 9:00							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHOD	0 3.2.18.1							
Resistivity, Solid		150		1400	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A,	ASTM D2974							
Percent Moisture		0.1		11.7	%	1	02/07/2017 20:22	R228924
STANDARD METHODS 450	00-CL E (TOTAL)							
Chloride	NELAP	55	J	25	mg/Kg-dry	1	02/07/2017 19:41	126885
SW-846 9030B, 9034								
Sulfide, Total	NELAP	31		< 31	mg/Kg-dry	1	02/06/2017 15:24	126818
SW-846 9036 (TOTAL)								
Sulfate	NELAP	110		504	mg/Kg-dry	1	02/07/2017 19:44	126887
SW-846 9045C								
pH (1:1)	NELAP	1.00		6.73		1	02/03/2017 18:24	R228793

-	2
6	Jolala Da
-	ekiad, inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Work Order: 17020225

Report Date: 13-Feb-17

Lab ID: 17020225-018	
----------------------	--

Matrix: SOLID	Collection Date: 01/27/2017 9:00						
Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METH	OD 3.2.18.1						
Resistivity, Solid		150	2540	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035	A, ASTM D2974						
Percent Moisture		0.1	14.8	%	1	02/07/2017 20:23	R228924
STANDARD METHODS 4	500-CL E (TOTAL)						
Chloride	NELAP	58	59	mg/Kg-dry	1	02/07/2017 20:35	126885
SW-846 9030B, 9034							
Sulfide, Total	NELAP	35	< 35	mg/Kg-dry	1	02/06/2017 15:30	126818
SW-846 9036 (TOTAL)							
Sulfate	NELAP	115	126	mg/Kg-dry	1	02/07/2017 20:38	126887
SW-846 9045C							
pH (1:1)	NELAP	1.00	8.26		1	02/03/2017 18:46	R228793

-	
6	Jollah Tra
0	ekiad, inc.
	Environmental Laboratory

http://www.teklabinc.com/

Work Order: 17020225

Report Date: 13-Feb-17

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005 Lab ID: 17020225-029

Client Sample ID: L17-6

Matrix: SOLID	Collection Date: 01/27/2017 9:00						
Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHOD	3.2.18.1						
Resistivity, Solid		150	870	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A,	ASTM D2974						
Percent Moisture		0.1	14.1	%	1	02/07/2017 20:27	R228924
STANDARD METHODS 450	0-CL E (TOTAL)						
Chloride	NELAP	56	106	mg/Kg-dry	1	02/07/2017 22:50	126885
SW-846 9030B, 9034							
Sulfide, Total	NELAP	33	64	mg/Kg-dry	1	02/06/2017 15:44	126819
SW-846 9036 (TOTAL)							
Sulfate	NELAP	112	332	mg/Kg-dry	1	02/07/2017 22:53	126887
SW-846 9045C							
рН (1:1)	NELAP	1.00	7.87		1	02/03/2017 19:31	R228793

-	
(.	
0	ekiad. Inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Work Order: 17020225

Report Date: 13-Feb-17

Lab ID: 17020225-019

Matrix: SOLID	Collection Date: 01/27/2017 9:00							
Analyses	Certification	RL Q)ual F	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHO	D 3.2.18.1							
Resistivity, Solid		150		2700	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A	, ASTM D2974							
Percent Moisture		0.1		14.3	%	1	02/07/2017 20:24	R228924
STANDARD METHODS 4500-CL E (TOTAL)								
Chloride	NELAP	55	J	42	mg/Kg-dry	1	02/07/2017 20:43	126885
SW-846 9030B, 9034								
Sulfide, Total	NELAP	33		< 33	mg/Kg-dry	1	02/06/2017 15:32	126818
SW-846 9036 (TOTAL)								
Sulfate	NELAP	109		125	mg/Kg-dry	1	02/07/2017 20:46	126887
SW-846 9045C								
pH (1:1)	NELAP	1.00		8.25		1	02/03/2017 18:50	R228793

57
eklah Inc
Environmental Laboratory

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Work Order: 18020088

Report Date: 07-Feb-18

Client Sample ID: L17-9 Composite

Matrix: SOLID

Lab ID: 18020088-002

Collection Date: 01/30/2018 13:00

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHO	0 3.2.18.1						
Resistivity, Solid	*	150	1190	Ohms/cm	1	02/06/2018 17:05	R243206
EPA SW846 3550C, 5035A,	ASTM D2974						
Percent Moisture	*	0.1	19.3	%	1	02/05/2018 14:56	R243164
STANDARD METHODS 450	00-CL E (TOTAL) 1997						
Chloride	NELAP	62	74	mg/Kg-dry	1	02/06/2018 16:20	138761
SW-846 9030B, 9034							
Sulfide, Total	NELAP	37	< 37	mg/Kg-dry	1	02/07/2018 16:15	138799
SW-846 9036 (TOTAL)							
Sulfate	NELAP	123	147	mg/Kg-dry	1	02/06/2018 16:22	138760
SW-846 9045C							
pH (1:1)	NELAP	1.00	7.08		1	02/02/2018 13:40	R243064

-	
(.	
0	ekiad. Inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Lab ID: 17020225-020

Matrix: SOLID

Work Order: 17020225

Report Date: 13-Feb-17

Client Sample ID: L17-10

Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
0 3.2.18.1						
	150	1990	Ohms/cm	1	02/06/2017 11:05	R228915
ASTM D2974						
	0.1	15.0	%	1	02/07/2017 20:24	R228924
00-CL E (TOTAL)						
NELAP	59	60	mg/Kg-dry	1	02/07/2017 20:54	126885
NELAP	34	< 34	mg/Kg-dry	1	02/06/2017 15:32	126818
NELAP	118	129	mg/Kg-dry	1	02/07/2017 20:57	126887
NELAP	1.00	8.37		1	02/03/2017 18:54	R228793
	0 3.2.18.1 ASTM D2974 00-CL E (TOTAL) NELAP NELAP	0 3.2.18.1 150 ASTM D2974 0.1 00-CL E (TOTAL) 0.1 NELAP 59 NELAP 34 NELAP 118	3.2.18.1 150 1990 ASTM D2974 0.1 15.0 00-CL E (TOTAL) 00-CL E (TOTAL) 00-CL E (TOTAL) NELAP 59 60 NELAP 34 < 34	3.2.18.1 150 1990 Ohms/cm ASTM D2974 0.1 15.0 % 00-CL E (TOTAL) 00 mg/Kg-dry NELAP 59 60 mg/Kg-dry NELAP 34 < 34	3.2.18.1 150 1990 Ohms/cm 1 ASTM D2974 0.1 15.0 % 1 00-CL E (TOTAL) 0.1 15.0 % 1 NELAP 59 60 mg/Kg-dry 1 NELAP 34 < 34	3.2.18.1 150 1990 Ohms/cm 1 02/06/2017 11:05 ASTM D2974 0.1 15.0 % 1 02/07/2017 20:24 00-CL E (TOTAL) NELAP 59 60 mg/Kg-dry 1 02/07/2017 20:54 NELAP 34 < 34

-	
(.	
0	ekiad. Inc.
	Environmental Laboratory

Matrix: SOLID

Laboratory Results

Work Order: 17020225

Report Date: 13-Feb-17

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005 Lab ID: 17020225-021

Client Sample ID: L17-11

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHO	D 3.2.18.1							
Resistivity, Solid		150		2790	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A	, ASTM D2974							
Percent Moisture		0.1		15.3	%	1	02/07/2017 20:24	R228924
STANDARD METHODS 45	00-CL E (TOTAL)							
Chloride	NELAP	56	J	36	mg/Kg-dry	1	02/07/2017 21:32	126885
SW-846 9030B, 9034								
Sulfide, Total	NELAP	34		< 34	mg/Kg-dry	1	02/06/2017 15:35	126819
SW-846 9036 (TOTAL)								
Sulfate	NELAP	111	J	87	mg/Kg-dry	1	02/07/2017 21:34	126887
SW-846 9045C								
pH (1:1)	NELAP	1.00		8.10		1	02/03/2017 19:01	R228793

-	
(.	
0	ekiad. Inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Lab ID: 17020225-026

Matrix: SOLID

Work Order: 17020225

Report Date: 13-Feb-17

Client Sample ID: L17-12

			-					
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHOD	0 3.2.18.1							
Resistivity, Solid		150		2850	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A, ASTM D2974								
Percent Moisture		0.1		13.9	%	1	02/07/2017 20:26	R228924
STANDARD METHODS 4500-CL E (TOTAL)								
Chloride	NELAP	55	J	37	mg/Kg-dry	1	02/07/2017 22:26	126885
SW-846 9030B, 9034								
Sulfide, Total	NELAP	31		< 31	mg/Kg-dry	1	02/06/2017 15:42	126819
SW-846 9036 (TOTAL)								
Sulfate	NELAP	110		178	mg/Kg-dry	1	02/07/2017 22:28	126887
SW-846 9045C								
pH (1:1)	NELAP	1.00		6.05		1	02/03/2017 19:16	R228793

-	5
6.	
0	ekiad. Inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Work Order: 17020225

Report Date: 13-Feb-17

Lab ID: 17020225-022

Matrix: SOLID	Collection Date: 01/27/2017 9:00						
Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHOD	0 3.2.18.1						
Resistivity, Solid		150	565	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A,	ASTM D2974						
Percent Moisture		0.1	17.1	%	1	02/07/2017 20:25	R228924
STANDARD METHODS 450	00-CL E (TOTAL)						
Chloride	NELAP	56	205	mg/Kg-dry	1	02/07/2017 21:40	126885
SW-846 9030B, 9034							
Sulfide, Total	NELAP	35	< 35	mg/Kg-dry	1	02/06/2017 15:37	126819
SW-846 9036 (TOTAL)							
Sulfate	NELAP	1110	1410	mg/Kg-dry	10	02/07/2017 21:48	126887
SW-846 9045C							
рН (1:1)	NELAP	1.00	7.56		1	02/03/2017 19:04	R228793

-	
(.	
0	ekiad. Inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Lab ID: 17020225-023

Matrix: SOLID

Work Order: 17020225

Report Date: 13-Feb-17

Client Sample ID: L17-14

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHO	D 3.2.18.1							
Resistivity, Solid		150		1170	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A	, ASTM D2974							
Percent Moisture		0.1		21.5	%	1	02/07/2017 20:25	R228924
STANDARD METHODS 45	00-CL E (TOTAL)							
Chloride	NELAP	61		113	mg/Kg-dry	1	02/07/2017 21:48	126885
SW-846 9030B, 9034								
Sulfide, Total	NELAP	38		< 38	mg/Kg-dry	1	02/06/2017 15:37	126819
SW-846 9036 (TOTAL)								
Sulfate	NELAP	121	J	110	mg/Kg-dry	1	02/07/2017 21:51	126887
SW-846 9045C								
pH (1:1)	NELAP	1.00		8.57		1	02/03/2017 19:06	R228793

	57
6	eklah Inc
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Lab ID: 17020225-024

Matrix: SOLID

Work Order: 17020225

Report Date: 13-Feb-17

Analyses	Certification	RL Q	ual Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHO	D 3.2.18.1						
Resistivity, Solid		150	1080	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A	A, ASTM D2974						
Percent Moisture		0.1	20.4	%	1	02/07/2017 20:25	R228924
STANDARD METHODS 45	00-CL E (TOTAL)						
Chloride	NELAP	63	227	mg/Kg-dry	1	02/07/2017 21:56	126885
SW-846 9030B, 9034							
Sulfide, Total	NELAP	37	< 37	mg/Kg-dry	1	02/06/2017 15:41	126819
SW-846 9036 (TOTAL)							
Sulfate	NELAP	125	140	mg/Kg-dry	1	02/07/2017 21:58	126887
SW-846 9045C							
pH (1:1)	NELAP	1.00	7.89		1	02/03/2017 19:09	R228793

-	
(.	
0	ekiad. Inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Lab ID: 17020225-025

Matrix: SOLID

Work Order: 17020225

Report Date: 13-Feb-17

Client Sample ID: L17-16

Analyses	Certification	RL Qua	l Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHO	D 3.2.18.1						
Resistivity, Solid		150	1570	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A	, ASTM D2974						
Percent Moisture		0.1	19.9	%	1	02/07/2017 20:26	R228924
STANDARD METHODS 45	00-CL E (TOTAL)						
Chloride	NELAP	59	88	mg/Kg-dry	1	02/07/2017 22:04	126885
SW-846 9030B, 9034							
Sulfide, Total	NELAP	36	< 36	mg/Kg-dry	1	02/06/2017 15:41	126819
SW-846 9036 (TOTAL)							
Sulfate	NELAP	118	181	mg/Kg-dry	1	02/07/2017 22:07	126887
SW-846 9045C							
рН (1:1)	NELAP	1.00	8.46		1	02/03/2017 19:12	R228793

-	
(.	
0	ekiad. Inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Lab ID: 17020225-003

Work Order: 17020225

Report Date: 13-Feb-17

Client Sample ID: L17-17

Matrix: SOLID	Collection Date: 01/27/2017 9:00						
Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHO	0 3.2.18.1						
Resistivity, Solid		150	2140	Ohms/cm	1	02/06/2017 11:05	R228915
EPA SW846 3550C, 5035A,	ASTM D2974						
Percent Moisture		0.1	14.0	%	1	02/06/2017 15:46	R228849
STANDARD METHODS 450	00-CL E (TOTAL)						
Chloride	NELAP	58	73	mg/Kg-dry	1	02/07/2017 17:18	126885
SW-846 9030B, 9034							
Sulfide, Total	NELAP	35	< 35	mg/Kg-dry	1	02/06/2017 15:08	126818
SW-846 9036 (TOTAL)							
Sulfate	NELAP	116	237	mg/Kg-dry	1	02/07/2017 17:20	126887
SW-846 9045C							
pH (1:1)	NELAP	1.00	8.47		1	02/03/2017 17:47	R228793

-	
6.	
-	ekiad, inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Lab ID: 17050416-012

Work Order: 17050416

Report Date: 12-May-17

Client Sample ID: L17-18

Matrix: SOLID	Collection Date: 05/05/2017 10:30						
Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 2-78-054 METHO	0 3.2.18.1						
Resistivity, Solid		150	1990	Ohms/cm	1	05/10/2017 12:43	R232615
EPA SW846 3550C, 5035A,	ASTM D2974						
Percent Moisture		0.1	21.8	%	1	05/08/2017 16:41	R232551
STANDARD METHODS 450	00-CL E (TOTAL)						
Chloride	NELAP	56	224	mg/Kg-dry	1	05/10/2017 17:03	130109
SW-846 9030B, 9034							
Sulfide, Total	NELAP	36	< 36	mg/Kg-dry	1	05/09/2017 16:44	129995
SW-846 9036 (TOTAL)							
Sulfate	NELAP	112	145	mg/Kg-dry	1	05/10/2017 17:05	130108
SW-846 9045C							
pH (1:1)	NELAP	1.00	7.11		1	05/09/2017 20:09	R232584

-	
(
	ekiad inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Lab ID: 17050416-001

Matrix: SOLID

Work Order: 17050416

Report Date: 12-May-17

Analyses	Certification	RL Qu	al Result	Units	DF	Date Analyzed	Batch	
EPA 600 2-78-054 METHOD 3.2.18.1								
Resistivity, Solid		150	1310	Ohms/cm	1	05/10/2017 12:02	R232615	
EPA SW846 3550C, 5035A	A, ASTM D2974							
Percent Moisture		0.1	21.7	%	1	05/08/2017 16:37	R232551	
STANDARD METHODS 45	500-CL E (TOTAL)							
Chloride	NELAP	58	277	mg/Kg-dry	1	05/10/2017 15:15	130109	
SW-846 9030B, 9034								
Sulfide, Total	NELAP	38	< 38	mg/Kg-dry	1	05/09/2017 16:36	129995	
SW-846 9036 (TOTAL)								
Sulfate	NELAP	115	179	mg/Kg-dry	1	05/10/2017 15:17	130108	
SW-846 9045C								
pH (1:1)	NELAP	1.00	7.11		1	05/08/2017 21:43	R232538	

-	
(.	
	ekiad inc.
	Environmental Laboratory

http://www.teklabinc.com/

Client: Shannon & Wilson, Inc.

Client Project: RPD Tribs 41-1-37530-005

Lab ID: 17050416-010

Matrix: SOLID

Work Order: 17050416

Report Date: 12-May-17

Client Sample ID: L17-20

Collection Date: 05/05/2017 10:30

Analyses	Certification	RL (Qual Result	Units	DF	Date Analyzed	Batch	
EPA 600 2-78-054 METHOD 3.2.18.1								
Resistivity, Solid		150	1310	Ohms/cm	1	05/10/2017 12:32	R232615	
EPA SW846 3550C, 5035/	A, ASTM D2974							
Percent Moisture		0.1	22.8	%	1	05/08/2017 16:40	R232551	
STANDARD METHODS 4	500-CL E (TOTAL)							
Chloride	NELAP	62	152	mg/Kg-dry	1	05/10/2017 16:55	130109	
SW-846 9030B, 9034								
Sulfide, Total	NELAP	38	< 38	mg/Kg-dry	1	05/09/2017 16:42	129995	
SW-846 9036 (TOTAL)								
Sulfate	NELAP	123	223	mg/Kg-dry	1	05/10/2017 16:57	130108	
SW-846 9045C								
pH (1:1)	NELAP	1.00	8.05		1	05/09/2017 20:04	R232584	

This page intentionally left blank

Appendix E Geotechnical Investigation Work Plan - Near Surface Sewers